Results and Prospects on Lepton Flavor Violation at Belle/Belle II K.Hayasaka (KMI, Nagoya Univ.) for Belle/Belle II collaborations ### Introduction - Lepton flavor violation (LFV) in charged leptons - ⇒negligibly small probability in the Standard Model (SM) γ even including neutrino oscillations: $$\rightarrow$$ $\mathcal{B}(\tau \rightarrow \mu \gamma) < O(10^{-40}),$ $\mathcal{B}(\tau \rightarrow \mu \mu \mu) < O(10^{-14})$ (X.Pham, EPJC8 513(1999)) #### Observation of LFV is a clear signature of New Physics (NP) - Many extensions of the SM predict LFV decays. - □ These branching fractions could be enhanced as high as current experimental sensitivity (~10⁻⁸). - □ Tau lepton = The heaviest charged lepton - Many possible LFV decay modes = ideal probe to NP ### Predicted BF in various models □ Various models predict BF for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$. | | Reference | τ → μγ | τ→μμμ | |-------------------------------|--------------------|-------------------|------------------| | SM+ v mixing | EPJ C8(1999)513 | 10-40 | 10-14 | | SM + heavy Maj v _R | PRD 66(2002)034008 | 10-9 | 10-10 | | Non-universal Z' | PLB 547(2002)252 | 10-9 | 10-8 | | SUSY SO(10) | PRD 68(2003)033012 | 10 ⁻⁸ | 10-10 | | mSUGRA+seesaw | PRD 66(2002)115013 | 10 ⁻⁷ | 10 ⁻⁹ | | SUSY Higgs | PLB 566(2003)217 | 10 ⁻¹⁰ | 10 ⁻⁷ | These numbers correspond to the most optimistic case. Our sensitivity ($\sim 10^{-8}$) reaches a possible region to find τ LFV! # predicted BF in various models Ratios of LFV decay BFs make us to distinguish between NP models. | | SUSY+GUT | Higgs | Little Higgs | non-universal | |--|-----------------------|-----------------------|--------------------|---------------| | | (SUSY+Seesaw) | mediated | | Z' boson | | $\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$ | ~2 × 10 ⁻³ | 0.06~0.1 | 0.4~2.3 | ~16 | | $\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$ | ~1 × 10 ⁻² | ~1 × 10 ⁻² | 0.3~1.6 | ~16 | | Br(τ→μγ)
@Max | <10 ⁻⁷ | <10 ⁻¹⁰ | <10 ⁻¹⁰ | <10-9 | (M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002)) Favorite modes $$\tau \rightarrow \mu \gamma$$ $\tau \rightarrow \mu \mu \mu$ Thus, it is important to search for various kinds of τ LFV. \rightarrow We have performed 48 analyses for τ LFV with the Belle data sample. ### Results on LFV at Belle ### KEKB/Belle B-factory: E at CM = Y(4S) $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ $\sigma(\tau\tau)\sim 0.9 \text{nb}, \ \sigma(bb)\sim 1.1 \text{nb}$ A B-factory is also a τ -factory! Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹ World highest luminosity! #### **Belle Detector:** Good track reconstruction and particle identifications Lepton efficiency:90% Fake rate: O(0.1) % for e O(1)% for μ ~ $9x10^8 \tau \tau$ at Belle # Analysis procedure • $$e^+e^- \rightarrow \tau^+\tau^-$$ Br~85% \downarrow 1 prong + missing (tag side) \downarrow $\mu\mu\mu$ (signal side) Fully reconstructed Signal extraction: $m_{\mu\mu\mu}$ – ΔE plane $$m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$$ $$\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM}$$ Blind analysis ⇒Blind signal region Estimate number of BG in the signal region using <u>sideband</u> data and MC Aug/02/2011 Nufact 2011 ### LFV τ decays; Signal and Background # Analysis strategy #### Rare decay searches Need to understand background and reduce it as much as possible Simple Hard - $\underline{}$ $\underline{\tau \rightarrow \varrho\varrho\varrho}$ - $\neg \tau \rightarrow \ell K_s, \Lambda h$ - $\underline{} \underline{} \underline{\phantom{$ - $\ \ \ \tau \rightarrow \ell P^0(\rightarrow \gamma \gamma)$ - $\sigma \quad \tau \rightarrow \ell hh'$ Difficulty of background reduction - Analyze the modes from simple selection to hard for background reduction - Provide feedback to next analysis of similar final state # Search for $\tau \rightarrow 3$ leptons Data: 782fb-1 No event s are found in the signal region. (f) $\tau \rightarrow \mu^+ e^- e^-$ - Expected # of BG: 0.01-0.21 - Because of good lepton ID | 3 | Br<(1.5-2.7)x10 ⁻⁸ | |---|-------------------------------| | | at 90%CL. | →most sensitive results Phys.Lett.B 687,139 (2010) | $m_{uee} (GeV/c^2)$ | | m _{euu} (GeV/c ² | $m_{uee} (GeV/c^2)$ | | | |---------------------|-------|--------------------------------------|-----------------------|-------------------------|--| | Mode | ε (%) | N _{BG} EXP | σ _{svst} (%) | UL (x10 ⁻⁸) | | | e-e+e- | 6.0 | 0.21±0.15 | 9.8 | 2.7 | | | $\mu^-\mu^+\mu^-$ | 7.6 | 0.13 ± 0.06 | 7.4 | 2.1 | | | $e^-\mu^+\mu^-$ | 6.1 | 0.10 ± 0.04 | 9.5 | 2.7 | | | $\mu^- e^+ e^-$ | 9.3 | 0.04 ± 0.04 | 7.8 | 1.8 | | | $\mu^- e^+ \mu^-$ | 10.1 | 0.02 ± 0.02 | 7.6 | 1.7 | | | $e^-\mu^+e^-$ | 11.5 | 0.01 ± 0.01 | 7.7 | 1.5 | | #### Search with 904fb⁻¹ data sample - Select three hadrons - Require Λ vertex 4 modes are searched for. (h= π and K) - $\tau^- \rightarrow \overline{\Lambda} h^-$: (B-L) conserving decay - $\tau^- \rightarrow \Lambda h^-$: (B-L) violating decay Nufact 2011 ### BG rejection for $\tau \rightarrow \Lambda h/\overline{\Lambda}h$ 20 #### To reduce ττ BG including K_S^0 \Rightarrow reconstruct K_S^0 and reject events that are likely to be K_S^0 85% of eff. is kept while 75% of Ks⁰ BG events is rejected. #### To reduce $q\bar{q}$ BG including Λ \Rightarrow reject events with a proton in tag side 40 (due to BN conservation, the events including a Λ tend to have baryon on tag side.) A third of qq BG events are rejected while a loss of eff. Is negligibly small. Aug/02/2011 Nufact 2011 $P(p/\pi)$ for the hadronic tag-track ### Results for $\tau \rightarrow \Lambda h/\Lambda h$ #### In the signal region: no candidate events are found ⇒ no significant excess •Expected # of BG: (0.21-0.42) | | | $N_{ m BG}$ | | $N_{ m obs}$ | 890 | |------------------------------|------|-----------------|-----|--------------|-----| | $ au^- o ar{\Lambda} \pi^-$ | 4.80 | 0.21 ± 0.15 | 8.2 | 0 | 2.3 | | $ au^- o \Lambda \pi^-$ | 4.39 | 0.31 ± 0.18 | 8.2 | 0 | 2.2 | | $ au^- o \bar{\Lambda} K^-$ | 4.11 | 0.31 ± 0.14 | 8.6 | 0 | 2.2 | | $\tau^- \to \Lambda K^-$ | 3.16 | 0.42 ± 0.19 | 8.6 | 0 | 2.1 | #### Set upper limits@90%CL: →most sensitive results (preliminary) 1.75 1.8 O.4 (GeV) 0 -0.2 -0.4 # Search for $\ell V^0(=\rho^0,K^{*0},\omega,\phi)$ - Search with 854fb⁻¹ data sample - Select one lepton and two hadrons - Require di-hadron invariant mass to be consistent with a vector meson mass - →The requirement helps BG-rejection. - Possible background - For $\ell=\mu$, hadronic tau decay and qq with miss μ -ID - For ℓ=e, 2photon processes could be large BG. - It turns out that not only 2photon processes but also ee+X process become large background. → Reduced using missing-momentum # Result for $\ell V^0(=\rho^0, K^{*0}, \omega, \phi)$ M_{um} (GeV/c²) #### After event selection - 1 event $\mu \phi$, μK^{*0} , $\mu \overline{K^{*0}}$ - 0 events others in the signal region. - ⇒ no significant excess •expected # of BG: 0.06-1.48 $$Br(\tau \rightarrow \ell V^0) < (1.2-8.4)x10^{-8} @90\%CL$$ →most sensitive results Phys.Lett.B 699,251 (2011) | τ⁻→ | Eff. | N _{BG} ^{exp} | N _{obs.} | UL
x10 ⁻⁸ | τ-→ | Eff. | N _{BG} ^{exp} | N _{obs.} | UL
x10 ⁻⁸ | |---------------|------|--------------------------------|-------------------|-------------------------|---------------------------|------|--------------------------------|-------------------|-------------------------| | $e^-\!p^0$ | 7.6% | 0.29 ± 0.15 | 0 | 1.8 | e^-K^{*0} | 4.4% | 0.39 ± 0.14 | 0 | 3.2 | | $\mu^- ho^0$ | 7.1% | 1.48 ± 0.35 | 0 | 1.2 | $\mu^- K^{*0}$ | 3.4% | 0.53 ± 0.20 | 1 | 7.2 | | e-ф | 4.2% | 0.47 ± 0.19 | 0 | 3.1 | $e^{-}\overline{K^{*0}}$ | 4.4% | 0.08 ± 0.08 | 0 | 3.4 | | μ-φ | 3.2% | 0.06 ± 0.06 | 1 | 8.4 | $\mu^- \overline{K^{*0}}$ | 3.6% | 0.45 ± 0.17 | 1 | 7.0 | | e-ω | 2.9% | 0.30 ± 0.14 | 0 | 4.8 | μ-ω | 2.4% | 0.72 ± 0.18 | 0 | 4.7 | Aug/02/2011 Nufact 2011 15 - Update with 854fb⁻¹ data - BaBar; Br<(7-48)x10⁻⁸ at 221fb⁻¹ - 14 modes are investigated (h,h'= π^{\pm} and K $^{\pm}$) - $\tau^- \rightarrow \ell^- h^+ h^{\prime-}$: 8 modes (lepton flavor violation) - $\tau^- \rightarrow \ell^+ h^- h^{\prime-}$: 6 modes (lepton number violation) Missing momentum can help to reject this kind of BGs since signal has ν only on tag side. ₁₆ ### Result for Qhh' #### In the signal region $e^+K^-\pi^-$ 1event : in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^-$ no events: in other modes ⇒ no significant excess/Expected # of BG: 0.06-0.72 | Mode | ε (%) | $N_{ m BG}$ | $\sigma_{\rm syst}$ (%) | $N_{ m obs}$ | s90 | \mathcal{B} (10 ⁻⁸) | |--------------------------------------|-------|-----------------|-------------------------|--------------|------|-----------------------------------| | $ au^- ightarrow \mu^- \pi^+ \pi^-$ | 5.83 | 0.63 ± 0.23 | 5.3 | 0 | 1.87 | 2.1 | | $ au^- ightarrow \mu^+ \pi^- \pi^-$ | 6.55 | 0.33 ± 0.16 | 5.3 | 1 | 4.02 | 3.9 | | $ au^- ightarrow e^- \pi^+ \pi^-$ | 5.45 | 0.55 ± 0.23 | 5.4 | 0 | 1.94 | 2.3 | | $ au^- ightarrow e^+ \pi^- \pi^-$ | 6.56 | 0.37 ± 0.18 | 5.4 | 0 | 2.10 | 2.0 | | $\tau^- \to \mu^- K^+ K^-$ | 2.85 | 0.51 ± 0.18 | 5.9 | 0 | 1.97 | 4.4 | | $\tau^- \to \mu^+ K^- K^-$ | 2.98 | 0.25 ± 0.13 | 5.9 | 0 | 2.21 | 4.7 | | $\tau^- \to e^- K^+ K^-$ | 4.29 | 0.17 ± 0.10 | 6.0 | 0 | 2.28 | 3.4 | | $\tau^- \to e^+ K^- K^-$ | 4.64 | 0.06 ± 0.06 | 6.0 | 0 | 2.38 | 3.3 | | $ au^- ightarrow \mu^- \pi^+ K^-$ | 2.72 | 0.72 ± 0.27 | 5.6 | 1 | 3.65 | 8.6 | | $\tau^- \to e^- \pi^+ K^-$ | 3.97 | 0.18 ± 0.13 | 5.7 | 0 | 2.27 | 3.7 | | $\tau^- \to \mu^- K^+ \pi^-$ | 2.62 | 0.64 ± 0.23 | 5.6 | 0 | 1.86 | 4.5 | | $\tau^- \to e^- K^+ \pi^-$ | 4.07 | 0.55 ± 0.31 | 5.7 | 0 | 1.97 | 3.1 | | $ au^- ightarrow \mu^+ K^- \pi^-$ | 2.55 | 0.56 ± 0.21 | 5.6 | 0 | 1.93 | 4.8 | 5.7 2.02 3.2 $4.00 \quad 0.46 \pm 0.21$ #### Set upper limits at 90%CL: Br($\tau \rightarrow \ell hh'$)< (2.0-8.6)x10⁻⁸ →most sensitive results (preliminary) ### Upper limits for τ LFV searched for at Belle. Reach upper limits around 10⁻⁸ ~100x more sensitive than CLEO Update using full data samples will be finalized soon! Prospects on LFV at Belle II # SuperKEKB/Belle II KEKB superKEKB Vertical β function: 5.9 mm \rightarrow 0.27/0.30 mm (x20) Beam current: $1.7/1.4 \text{ A} \rightarrow 3.6/2.6 \text{ A} (\times 2)$ \rightarrow L = 2x10³⁴ cm⁻²s⁻¹ \rightarrow 8x10³⁵ cm⁻²s⁻¹ (x40) SVD: 4 DSSD lyrs \rightarrow 2 DEPFET lyrs + 4 DSSD lyrs CDC: small cell, long lever arm ACC+TOF → TOP+A-RICH ECL: waveform sampling, pure CsI for end-caps KLM: RPC → Scintillator +SiPM (end-caps) # Expected luminosity on SuperKEB ### Future prospect on tau LFV - □ Belle-II will collect ~10¹⁰ tau leptons. (=50ab⁻¹) - Sensitivity depends on BG level. - Recent improvement of the analysis (BG understanding, more optimized selection) - → Improve achievable sensitivity - B(τ→μγ)~O(10⁻⁹) and C(τ→μμμ)~O(10⁻¹⁰) at 50ab⁻¹ - Improvement of BG reduction is important. - Beam BG - Signal resolution ### Summary - Belle completed operation with a 1ab⁻¹ data sample, which contains ~10⁹ tau-pairs. This is the world's largest τ data sample. - By adding more data and studying the dominant BGs and optimizing the analyses to suppress these BGs, we have significantly improved τ LFV upper limits. - Almost all upper limits on BF for τ LFV are analyzed with Belle's full data sample and reach O(10⁻⁸). - Upgrade of KEKB and Belle is in progress and Belle II will start machine operation in the second half of 2014. Finally, a 50ab⁻¹ data sample will be collected. (~2020) - \square A sensitivity of τ LFV search will reach O(10⁻⁹ $^{-10}$). - Optimization for BG reduction is important for future experiment ### SuperKEKB Vertical β function: 5.9 mm (KEKB) \rightarrow 0.27/0.30 mm (superKEKB) (x20) Beam current: 1.7/1.4 A(KEKB) \rightarrow 3.6/2.6 A (superKEKB) (x2) \rightarrow L = 2x10³⁴ cm⁻²s⁻¹ (KEKB) $\rightarrow 8x10^{35} \text{ cm}^{-2}\text{s}^{-1}$ (superKEKB) (x40) ### Belle II ECL: waveform sampling, pure CsI for end-caps KLM: RPC → Scintillator +SiPM (end-caps)