Results and Prospects on Lepton Flavor Violation at Belle/Belle II

K. Hayasaka (KMI, Nagoya Univ.)
for Belle/Belle II collaborations
Introduction

- Lepton flavor violation (LFV) in charged leptons
 ⇒ negligibly small probability in the Standard Model (SM)
 even including neutrino oscillations:
 \[\mathcal{B}(\tau \rightarrow \mu \gamma) < \mathcal{O}(10^{-40}), \]
 \[\mathcal{B}(\tau \rightarrow \mu \mu \mu) < \mathcal{O}(10^{-14}) \]
 (X. Pham, EPJC8 513(1999))

Observation of LFV is a clear signature of New Physics (NP)

- Many extensions of the SM predict LFV decays.
 - These branching fractions could be enhanced as high as current experimental sensitivity (~10^{-8}).

- Tau lepton = The heaviest charged lepton
 - Expected strong coupling to NP \[\tau \text{ LFV search} \]
 - Many possible LFV decay modes = ideal probe to NP
Predicted BF in various models

- Various models predict BF for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reference</th>
<th>$\tau \rightarrow \mu \gamma$</th>
<th>$\tau \rightarrow \mu \mu \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM+ ν mixing</td>
<td>EPJ C8(1999)513</td>
<td>10^{-40}</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>SM + heavy Maj ν_R</td>
<td>PRD 66(2002)034008</td>
<td>10^{-9}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>Non-universal Z'</td>
<td>PLB 547(2002)252</td>
<td>10^{-9}</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>SUSY SO(10)</td>
<td>PRD 68(2003)033012</td>
<td>10^{-8}</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>mSUGRA+seesaw</td>
<td>PRD 66(2002)115013</td>
<td>10^{-7}</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>SUSY Higgs</td>
<td>PLB 566(2003)217</td>
<td>10^{-10}</td>
<td>10^{-7}</td>
</tr>
</tbody>
</table>

These numbers correspond to the most optimistic case.

Our sensitivity ($\sim 10^{-8}$) reaches a possible region to find τ LFV!
predicted BF in various models

Ratios of LFV decay BFs make us to distinguish between NP models.

<table>
<thead>
<tr>
<th></th>
<th>SUSY+GUT (SUSY+Seesaw)</th>
<th>Higgs mediated</th>
<th>Little Higgs</th>
<th>non-universal Z’ boson</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\frac{\tau \to \mu \mu \mu}{\tau \to \mu \gamma} \right)$</td>
<td>~2 \times 10^{-3}</td>
<td>0.06\sim0.1</td>
<td>0.4\sim2.3</td>
<td>~16</td>
</tr>
<tr>
<td>$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma} \right)$</td>
<td>~1 \times 10^{-2}</td>
<td>~1 \times 10^{-2}</td>
<td>0.3\sim1.6</td>
<td>~16</td>
</tr>
<tr>
<td>$\text{Br}(\tau \to \mu \gamma)$ @Max</td>
<td><10^{-7}</td>
<td><10^{-10}</td>
<td><10^{-10}</td>
<td><10^{-9}</td>
</tr>
</tbody>
</table>

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al.,PLB547, 252 (2002))

Favorite modes $\tau \to \mu \gamma$ $\tau \to \mu \mu \mu$

Thus, it is important to search for various kinds of τ LFV.

\to We have performed 48 analyses for τ LFV with the Belle data sample.
Results on LFV at Belle
KEKB/Belle

B-factory: E at CM = Y(4S)
$e^+(3.5\ \text{GeV})\ e^-(8\ \text{GeV})$
$\sigma(\tau\tau)\sim 0.9\text{nb}$, $\sigma(bb)\sim 1.1\text{nb}$

A B-factory is also a τ-factory!
Peak luminosity: $2.1\times 10^{34}\ \text{cm}^{-2}\text{s}^{-1}$
World highest luminosity!

total: > 1ab^{-1}

- Y (4S): 711fb^{-1}
- Y (5S): 121fb^{-1}
- Y (3S): 3.0fb^{-1}
- Y (2S): 24fb^{-1}
- Y (1S): 5.7fb^{-1}

0 off-resonance:
87fb^{-1}

Belle Detector:
Good track reconstruction and particle identifications

- Lepton efficiency: 90%
- Fake rate: O(0.1) % for e
- O(1)% for μ

~9x10^8 $\tau\tau$ at Belle
Analysis procedure

- $e^+e^- \rightarrow \tau^+\tau^-$
 - Br~85%
 - 1 prong + missing (tag side)
 - $\mu\mu\mu$ (signal side)

Signal extraction: $m_{\mu\mu\mu} - \Delta E$ plane

- $m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$

- $\Delta E = E_{CM}^{\mu\mu\mu} - E_{beam}^{CM}$

Blind analysis \Rightarrow Blind signal region

Estimate number of BG in the signal region using sideband data and MC

Aug/02/2011
Nufact 2011
LFV τ decays; Signal and Background

Signal
- Signal side:
 - μ^-, μ^+, τ^-, τ^+, e^-, e^+
 - Neutrinos in both sides
 - Missing energy in signal side

Tag Side
- $\bar{\nu}_\tau$
 - Neutrino(s) in tag side
 - Particle ID
 - Mass of mesons

2 photon process
- $f =$ leptons, quarks
- e^-, γ, f, \bar{f}, e^+

Radiative Bhabha process
- e^+, e^-, e^-
- Many tracks

Aug/02/2011
Nufact 2011
Analysis strategy

- **Rare decay searches**
 - Need to understand background and reduce it as much as possible

- $\tau \rightarrow \ell\ell\ell$
- $\tau \rightarrow \ell K_s, \Lambda h$
- $\tau \rightarrow \ell V^0 (\rightarrow hh')$
- $\tau \rightarrow \ell P^0 (\rightarrow \gamma\gamma)$
- $\tau \rightarrow \ell hh'$
- $\tau \rightarrow \ell\gamma$
 - $\ell = e, \mu$
 - $h = \pi, K$

 - Analyze the modes from simple selection to hard for background reduction

 - Provide feedback to next analysis of similar final state
Search for $\tau \to 3\text{leptons}$

- Data: 782fb$^{-1}$
- No events are found in the signal region.
- **Almost BG free**
 - Expected # of BG: 0.01-0.21
 - Because of good lepton ID
- $\text{Br} < (1.5-2.7) \times 10^{-8}$ at 90%CL.
 - Most sensitive results

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_{BG}^{EXP}</th>
<th>σ_{syst} (%)</th>
<th>UL ($\times 10^{-8}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^-e^+e^-$</td>
<td>6.0</td>
<td>0.21 ± 0.15</td>
<td>9.8</td>
<td>2.7</td>
</tr>
<tr>
<td>$\mu^-\mu^+\mu^-$</td>
<td>7.6</td>
<td>0.13 ± 0.06</td>
<td>7.4</td>
<td>2.1</td>
</tr>
<tr>
<td>$e^-\mu^+\mu^-$</td>
<td>6.1</td>
<td>0.10 ± 0.04</td>
<td>9.5</td>
<td>2.7</td>
</tr>
<tr>
<td>$\mu^-e^+e^-$</td>
<td>9.3</td>
<td>0.04 ± 0.04</td>
<td>7.8</td>
<td>1.8</td>
</tr>
<tr>
<td>$\mu^-e^+\mu^-$</td>
<td>10.1</td>
<td>0.02 ± 0.02</td>
<td>7.6</td>
<td>1.7</td>
</tr>
<tr>
<td>$e^-\mu^+e^-$</td>
<td>11.5</td>
<td>0.01 ± 0.01</td>
<td>7.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Search for $\tau \rightarrow \Lambda h/\bar{\Lambda}h$

Search with 904fb$^{-1}$ data sample
- Select three hadrons
- **Require Λ vertex**

4 modes are searched for. ($h=\pi$ and K)
- $\tau^+ \rightarrow \bar{\Lambda}h^-$: (B-L) conserving decay
- $\tau^+ \rightarrow \Lambda h^-$: (B-L) violating decay

Signal

- $e^- \tau^- \Lambda e^+$
- $\pi^- p \pi^- p$

Generic $\tau\tau$ BG

- $\pi^- \pi^+ p\pi^-$
- $\pi^- \pi^+ q\bar{q}$BG

Misid as Λ

- $e^- \tau^+ \tau^+ \pi^- \pi^- \gamma\gamma$
- $p \pi^0 \pi^0 \gamma\gamma$

Aug/02/2011

Updated this summer

Nufact 2011
BG rejection for \(\tau \rightarrow \Lambda h/\bar{\Lambda}h \)

To reduce \(\tau \tau \) BG including \(K_S^0 \)

\[\Rightarrow \text{reconstruct } K_S^0 \text{ and reject events that are likely to be } K_S^0 \]

85% of eff. is kept while
75% of \(K_S^0 \) BG events is rejected.

To reduce \(q\bar{q} \) BG including \(\Lambda \)

\[\Rightarrow \text{reject events with a proton in tag side} \]
(due to BN conservation, the events including a \(\Lambda \) tend to have baryon on tag side.)

A third of \(q\bar{q} \) BG events are rejected while a loss of eff. Is negligibly small.
Results for $\tau \rightarrow \Lambda h/\bar{\Lambda}h$

In the signal region:
no candidate events are found
\Rightarrow no significant excess

* Expected # of BG: (0.21-0.42)

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_{BG}</th>
<th>σ_{syst} (%)</th>
<th>N_{obs}</th>
<th>s_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow \Lambda \pi^-$</td>
<td>4.80</td>
<td>0.21 ± 0.15</td>
<td>8.2</td>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \Lambda \pi^-$</td>
<td>4.39</td>
<td>0.31 ± 0.18</td>
<td>8.2</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \bar{\Lambda} K^-$</td>
<td>4.11</td>
<td>0.31 ± 0.14</td>
<td>8.6</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \Lambda K^-$</td>
<td>3.16</td>
<td>0.42 ± 0.19</td>
<td>8.6</td>
<td>0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Set upper limits@90%CL:
$\text{Br}(\tau^- \rightarrow \Lambda \pi^-)<2.8 \times 10^{-8}$ (B-L) cons.
$\text{Br}(\tau^- \rightarrow \bar{\Lambda} K^-)<3.1 \times 10^{-8}$
$\text{Br}(\tau^- \rightarrow \Lambda \pi^-)<3.0 \times 10^{-8}$ (B-L) viol.
$\text{Br}(\tau^- \rightarrow \Lambda K^-)<4.2 \times 10^{-8}$

\rightarrow most sensitive results
Search for $\ell V^0 (=\rho^0, K^{*0}, \omega, \phi)$

- Search with 854 fb$^{-1}$ data sample
 - Select one lepton and two hadrons
 - Require di-hadron invariant mass to be consistent with a vector meson mass
 - The requirement helps BG-rejection.

- Possible background
 - For $\ell=\mu$, hadronic tau decay and qq with miss μ-ID
 - For $\ell=e$, 2photon processes could be large BG.
 - It turns out that not only 2photon processes but also ee+X process become large background. → Reduced using missing-momentum direction.

2photon BG
Result for $\ell V^0(=\rho^0,K^{*0},\omega,\phi)$

After event selection
• 1 event $\mu\phi$, μK^{*0}, μK^{*0}
• 0 events others in the signal region.
⇒ no significant excess

$\text{Br}(\tau \to \ell V^0) < (1.2-8.4) \times 10^{-8}$ @90%CL
→ most sensitive results

<table>
<thead>
<tr>
<th>τ^- →</th>
<th>Eff.</th>
<th>N_{BG}^{exp}</th>
<th>N_{obs}</th>
<th>UL x10^{-8}</th>
<th>τ^- →</th>
<th>Eff.</th>
<th>N_{BG}^{exp}</th>
<th>N_{obs}</th>
<th>UL x10^{-8}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^-\rho^0$</td>
<td>7.6%</td>
<td>0.29±0.15</td>
<td>0</td>
<td>1.8</td>
<td>e^-K^{*0}</td>
<td>4.4%</td>
<td>0.39±0.14</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>$\mu^-\rho^0$</td>
<td>7.1%</td>
<td>1.48±0.35</td>
<td>0</td>
<td>1.2</td>
<td>μ^-K^{*0}</td>
<td>3.4%</td>
<td>0.53±0.20</td>
<td>1</td>
<td>7.2</td>
</tr>
<tr>
<td>$e^-\phi$</td>
<td>4.2%</td>
<td>0.47±0.19</td>
<td>0</td>
<td>3.1</td>
<td>$e^-\bar{K}^{*0}$</td>
<td>4.4%</td>
<td>0.08±0.08</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>$\mu^-\phi$</td>
<td>3.2%</td>
<td>0.06±0.06</td>
<td>1</td>
<td>8.4</td>
<td>$\mu^-\bar{K}^{*0}$</td>
<td>3.6%</td>
<td>0.45±0.17</td>
<td>1</td>
<td>7.0</td>
</tr>
<tr>
<td>$e^-\omega$</td>
<td>2.9%</td>
<td>0.30±0.14</td>
<td>0</td>
<td>4.8</td>
<td>$\mu^-\omega$</td>
<td>2.4%</td>
<td>0.72±0.18</td>
<td>0</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Search for $\ell hh'$

- Update with 854 fb$^{-1}$ data
 - BaBar; $\text{Br}<(7.48)\times10^{-8}$ at 221 fb$^{-1}$
- 14 modes are investigated ($h, h' = \pi^\pm$ and K^\pm)
 - $\tau^- \to \ell^+ h^+ h'^-$: 8 modes (lepton flavor violation)
 - $\tau^- \to \ell^+ h^+ h'^-$: 6 modes (lepton number violation)

Signal:
- e^- or μ^-
- π^-
- K^+

Generic $\tau\tau$ BG:
- π^-
- π^+

Miss-ID as μ^-

Miss-ID as K^+

Missing momentum can help to reject this kind of BGs since signal has ν only on tag side.

Also, $q\bar{q}$ events can be BG

Updated this summer
Result for $\ell hh'$

In the signal region:
- 1 event: in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^-$
- No events: in other modes

⇒ no significant excess/

Expected # of BG: 0.06-0.72

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_{BG}</th>
<th>σ_{syst} (%)</th>
<th>N_{obs}</th>
<th>s_{90}</th>
<th>B (10^{-8})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \rightarrow \mu^-\pi^+\pi^-$</td>
<td>5.83</td>
<td>0.63 ± 0.23</td>
<td>5.3</td>
<td>0</td>
<td>1.87</td>
<td>2.1</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^+\pi^-\pi^-$</td>
<td>6.55</td>
<td>0.33 ± 0.16</td>
<td>5.3</td>
<td>1</td>
<td>4.02</td>
<td>3.9</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^-\pi^+\pi^-$</td>
<td>5.45</td>
<td>0.55 ± 0.23</td>
<td>5.4</td>
<td>0</td>
<td>1.94</td>
<td>2.3</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^+\pi^-\pi^-$</td>
<td>6.56</td>
<td>0.37 ± 0.18</td>
<td>5.4</td>
<td>0</td>
<td>2.10</td>
<td>2.0</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^-K^+K^-$</td>
<td>2.85</td>
<td>0.51 ± 0.18</td>
<td>5.9</td>
<td>0</td>
<td>1.97</td>
<td>4.4</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^+K^-K^-$</td>
<td>2.98</td>
<td>0.25 ± 0.13</td>
<td>5.9</td>
<td>0</td>
<td>2.21</td>
<td>4.7</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^-K^+K^-$</td>
<td>4.29</td>
<td>0.17 ± 0.10</td>
<td>6.0</td>
<td>0</td>
<td>2.28</td>
<td>3.4</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^+K^-K^-$</td>
<td>4.64</td>
<td>0.06 ± 0.06</td>
<td>6.0</td>
<td>0</td>
<td>2.38</td>
<td>3.3</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^-\pi^+K^-$</td>
<td>2.72</td>
<td>0.72 ± 0.27</td>
<td>5.6</td>
<td>1</td>
<td>3.65</td>
<td>8.6</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^-\pi^+K^-$</td>
<td>3.97</td>
<td>0.18 ± 0.13</td>
<td>5.7</td>
<td>0</td>
<td>2.27</td>
<td>3.7</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^-K^+\pi^-$</td>
<td>2.62</td>
<td>0.64 ± 0.23</td>
<td>5.6</td>
<td>0</td>
<td>1.86</td>
<td>4.5</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^-K^+\pi^-$</td>
<td>4.07</td>
<td>0.55 ± 0.31</td>
<td>5.7</td>
<td>0</td>
<td>1.97</td>
<td>3.1</td>
</tr>
<tr>
<td>$\tau^- \rightarrow \mu^+K^-\pi^-$</td>
<td>2.55</td>
<td>0.56 ± 0.21</td>
<td>5.6</td>
<td>0</td>
<td>1.93</td>
<td>4.8</td>
</tr>
<tr>
<td>$\tau^- \rightarrow e^+K^-\pi^-$</td>
<td>4.00</td>
<td>0.46 ± 0.21</td>
<td>5.7</td>
<td>0</td>
<td>2.02</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Set upper limits at 90%CL:
\[\text{Br}(\tau \rightarrow \ell hh') < (2.0-8.6) \times 10^{-8} \]

⇒ most sensitive results (preliminary)
Upper limits for τ LFV searched for at Belle.

Reach upper limits around 10^{-8} ~100x more sensitive than CLEO

Update using full data samples will be finalized soon!

Aug/02/2011

Nufact 2011
Prospects on LFV at Belle II
SuperKEKB/Belle II

KEKB superKEKB
Vertical β function: 5.9 mm \rightarrow 0.27/0.30 mm (\times20)
Beam current: 1.7/1.4 A \rightarrow 3.6/2.6 A (\times2)

\rightarrow $L = 2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1} \rightarrow 8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1}$ (\times40)

SVD: 4 DSSD lyr \rightarrow 2 DEPFET lyr + 4 DSSD lyr
CDC: small cell, long lever arm
ACC+TOF \rightarrow TOP+A-RICH
ECL: waveform sampling, pure CsI for end-caps
KLM: RPC \rightarrow Scintillator + SiPM (end-caps)
Expected luminosity on SuperKEB

We are here

Goals of Belle II/SuperKEKB

We will reach 50 ab\(^{-1}\) in 2020-2021

- Integrated luminosity (ab\(^{-1}\))
- Peak luminosity (cm\(^{-2}\)s\(^{-1}\))

Year

Commissioning starts in late 2014.

5 ab\(^{-1}\) in 2016

9 months/year

20 days/month

5 ab\(^{-1}\) in 2016

20 days/month

We are here

Year

9 months/year

20 days/month

We will reach 50 ab\(^{-1}\) in 2020-2021
Future prospect on tau LFV

- Belle-II will collect
 \(~10^{10}\) tau leptons. (=50ab\(^{-1}\))

- Sensitivity depends on BG level.
 - Recent improvement of the analysis
 (BG understanding, more optimized selection)
 \(\rightarrow\) Improve achievable sensitivity

- \(\mathcal{B}(\tau \rightarrow \mu \gamma) \sim \mathcal{O}(10^{-9})\) and
 \(\mathcal{B}(\tau \rightarrow \mu \mu \mu) \sim \mathcal{O}(10^{-10})\) at 50ab\(^{-1}\)
 - Improvement of BG reduction is important.
 - Beam BG
 - Signal resolution
Summary

- Belle completed operation with a 1ab\(^{-1}\) data sample, which contains \(\sim 10^9\) tau-pairs. This is the world’s largest \(\tau\) data sample.

- By adding more data and studying the dominant BGs and optimizing the analyses to suppress these BGs, we have significantly improved \(\tau\) LFV upper limits.
 - Almost all upper limits on BF for \(\tau\) LFV are analyzed with Belle’s full data sample and reach O\((10^{-8})\).

- Upgrade of KEKB and Belle is in progress and Belle II will start machine operation in the second half of 2014. Finally, a 50ab\(^{-1}\) data sample will be collected. (~2020)

- A sensitivity of \(\tau\) LFV search will reach O\((10^{-9} - 10^{-10})\).
 - Optimization for BG reduction is important for future experiment
SuperKEKB

Vertical β function:
5.9 mm (KEKB)
→ 0.27/0.30 mm (superKEKB) (x20)

Beam current:
1.7/1.4 A (KEKB)
→ 3.6/2.6 A (superKEKB) (x2)

⇒ \[L = 2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1} \] (KEKB)
→ \[8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1} \] (superKEKB) (x40)

to obtain 40x higher luminosity!
Based on Belle detector

But…

- Higher background \((\times 10-20) \)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM

- Higher event rate \((\times 10) \)
 - higher rate trigger, DAQ and computing

SVD: 4 DSSD lyr → 2 DEPFET lyr + 4 DSSD lyr
CDC: small cell, long lever arm
ACC+TOF → TOP+A-RICH
ECL: waveform sampling, pure CsI for end-caps
KLM: RPC → Scintillator + SiPM (end-caps)