Results and Prospects on Lepton Flavor Violation at Belle/Belle II

K.Hayasaka (KMI, Nagoya Univ.) for Belle/Belle II collaborations

Introduction

- Lepton flavor violation (LFV) in charged leptons
- ⇒negligibly small probability in the Standard Model (SM) γ

even including neutrino oscillations:

$$\rightarrow$$
 $\mathcal{B}(\tau \rightarrow \mu \gamma) < O(10^{-40}),$
 $\mathcal{B}(\tau \rightarrow \mu \mu \mu) < O(10^{-14})$
(X.Pham, EPJC8 513(1999))

Observation of LFV is a clear signature of New Physics (NP)

- Many extensions of the SM predict LFV decays.
 - □ These branching fractions could be enhanced as high as current experimental sensitivity (~10⁻⁸).
- □ Tau lepton = The heaviest charged lepton

 - Many possible LFV decay modes = ideal probe to NP

Predicted BF in various models

□ Various models predict BF for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$.

	Reference	τ → μγ	τ→μμμ
SM+ v mixing	EPJ C8(1999)513	10-40	10-14
SM + heavy Maj v _R	PRD 66(2002)034008	10-9	10-10
Non-universal Z'	PLB 547(2002)252	10-9	10-8
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10-10
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

These numbers correspond to the most optimistic case.

Our sensitivity ($\sim 10^{-8}$) reaches a possible region to find τ LFV!

predicted BF in various models

Ratios of LFV decay BFs make us to distinguish between NP models.

	SUSY+GUT	Higgs	Little Higgs	non-universal
	(SUSY+Seesaw)	mediated		Z' boson
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	~2 × 10 ⁻³	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	~1 × 10 ⁻²	~1 × 10 ⁻²	0.3~1.6	~16
Br(τ→μγ) @Max	<10 ⁻⁷	<10 ⁻¹⁰	<10 ⁻¹⁰	<10-9

(M.Blanke, et al., JHEP 0705, 013(2007), C.Yue, et al., PLB547, 252 (2002))

Favorite modes

$$\tau \rightarrow \mu \gamma$$
 $\tau \rightarrow \mu \mu \mu$

Thus, it is important to search for various kinds of τ LFV.

 \rightarrow We have performed 48 analyses for τ LFV with the Belle data sample.

Results on LFV at Belle

KEKB/Belle

B-factory: E at CM = Y(4S) $e^+(3.5 \text{ GeV}) e^-(8 \text{ GeV})$ $\sigma(\tau\tau)\sim 0.9 \text{nb}, \ \sigma(bb)\sim 1.1 \text{nb}$

A B-factory is also a τ -factory!

Peak luminosity: 2.1x10³⁴ cm⁻²s⁻¹

World highest luminosity!

Belle Detector:

Good track reconstruction and particle identifications

Lepton efficiency:90%

Fake rate: O(0.1) % for e

O(1)% for μ

~ $9x10^8 \tau \tau$ at Belle

Analysis procedure

•
$$e^+e^- \rightarrow \tau^+\tau^-$$
 Br~85%
 \downarrow 1 prong + missing
(tag side)
 \downarrow $\mu\mu\mu$ (signal side)

Fully reconstructed

Signal extraction: $m_{\mu\mu\mu}$ – ΔE plane

$$m_{\mu\mu\mu} = \sqrt{(E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2)}$$

$$\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM}$$

Blind analysis ⇒Blind signal region

Estimate number of BG in the signal region using <u>sideband</u> data and MC

Aug/02/2011 Nufact 2011

LFV τ decays; Signal and Background

Analysis strategy

Rare decay searches

 Need to understand background and reduce it as much as possible

Simple

Hard

- $\underline{}$ $\underline{\tau \rightarrow \varrho\varrho\varrho}$
- $\neg \tau \rightarrow \ell K_s, \Lambda h$
- $\underline{} \underline{} \underline{\phantom{$
- $\ \ \ \tau \rightarrow \ell P^0(\rightarrow \gamma \gamma)$
- $\sigma \quad \tau \rightarrow \ell hh'$

Difficulty of background reduction

- Analyze the modes from simple selection to hard for background reduction
 - Provide feedback to next analysis of similar final state

Search for $\tau \rightarrow 3$ leptons

Data: 782fb-1

No event s are found in the signal region.

(f) $\tau \rightarrow \mu^+ e^- e^-$

- Expected # of BG: 0.01-0.21
- Because of good lepton ID

3	Br<(1.5-2.7)x10 ⁻⁸
	at 90%CL.

→most sensitive results

Phys.Lett.B 687,139 (2010)

$m_{uee} (GeV/c^2)$		m _{euu} (GeV/c ²	$m_{uee} (GeV/c^2)$		
Mode	ε (%)	N _{BG} EXP	σ _{svst} (%)	UL (x10 ⁻⁸)	
e-e+e-	6.0	0.21±0.15	9.8	2.7	
$\mu^-\mu^+\mu^-$	7.6	0.13 ± 0.06	7.4	2.1	
$e^-\mu^+\mu^-$	6.1	0.10 ± 0.04	9.5	2.7	
$\mu^- e^+ e^-$	9.3	0.04 ± 0.04	7.8	1.8	
$\mu^- e^+ \mu^-$	10.1	0.02 ± 0.02	7.6	1.7	
$e^-\mu^+e^-$	11.5	0.01 ± 0.01	7.7	1.5	

Search with 904fb⁻¹ data sample

- Select three hadrons
- Require Λ vertex

4 modes are searched for. (h= π and K)

- $\tau^- \rightarrow \overline{\Lambda} h^-$: (B-L) conserving decay
- $\tau^- \rightarrow \Lambda h^-$: (B-L) violating decay

Nufact 2011

BG rejection for $\tau \rightarrow \Lambda h/\overline{\Lambda}h$ 20

To reduce ττ BG including K_S^0

 \Rightarrow reconstruct K_S^0 and reject events that are likely to be K_S^0

85% of eff. is kept while 75% of Ks⁰ BG events is rejected.

To reduce $q\bar{q}$ BG including Λ

 \Rightarrow reject events with a proton in tag side 40 (due to BN conservation, the events including a Λ tend to have baryon on tag side.)

A third of qq BG events are rejected while a loss of eff. Is negligibly small.

Aug/02/2011 Nufact 2011

 $P(p/\pi)$ for the hadronic tag-track

Results for $\tau \rightarrow \Lambda h/\Lambda h$

In the signal region: no candidate events are found ⇒ no significant excess •Expected # of BG: (0.21-0.42)

		$N_{ m BG}$		$N_{ m obs}$	890
$ au^- o ar{\Lambda} \pi^-$	4.80	0.21 ± 0.15	8.2	0	2.3
$ au^- o \Lambda \pi^-$	4.39	0.31 ± 0.18	8.2	0	2.2
$ au^- o \bar{\Lambda} K^-$	4.11	0.31 ± 0.14	8.6	0	2.2
$\tau^- \to \Lambda K^-$	3.16	0.42 ± 0.19	8.6	0	2.1

Set upper limits@90%CL:

→most sensitive results

(preliminary)

1.75

1.8

O.4 (GeV)

0

-0.2

-0.4

Search for $\ell V^0(=\rho^0,K^{*0},\omega,\phi)$

- Search with 854fb⁻¹ data sample
 - Select one lepton and two hadrons
 - Require di-hadron invariant mass

to be consistent with a vector meson mass

- →The requirement helps BG-rejection.
- Possible background
 - For $\ell=\mu$, hadronic tau decay and qq with miss μ -ID
 - For ℓ=e, 2photon processes could be large BG.
 - It turns out that not only 2photon processes but also ee+X process become large background. → Reduced using missing-momentum

Result for $\ell V^0(=\rho^0, K^{*0}, \omega, \phi)$

 M_{um} (GeV/c²)

After event selection

- 1 event $\mu \phi$, μK^{*0} , $\mu \overline{K^{*0}}$
- 0 events others in the signal region.
- ⇒ no significant excess

•expected # of BG: 0.06-1.48

$$Br(\tau \rightarrow \ell V^0) < (1.2-8.4)x10^{-8} @90\%CL$$

→most sensitive results

Phys.Lett.B 699,251 (2011)

τ⁻→	Eff.	N _{BG} ^{exp}	N _{obs.}	UL x10 ⁻⁸	τ-→	Eff.	N _{BG} ^{exp}	N _{obs.}	UL x10 ⁻⁸
$e^-\!p^0$	7.6%	0.29 ± 0.15	0	1.8	e^-K^{*0}	4.4%	0.39 ± 0.14	0	3.2
$\mu^- ho^0$	7.1%	1.48 ± 0.35	0	1.2	$\mu^- K^{*0}$	3.4%	0.53 ± 0.20	1	7.2
e-ф	4.2%	0.47 ± 0.19	0	3.1	$e^{-}\overline{K^{*0}}$	4.4%	0.08 ± 0.08	0	3.4
μ-φ	3.2%	0.06 ± 0.06	1	8.4	$\mu^- \overline{K^{*0}}$	3.6%	0.45 ± 0.17	1	7.0
e-ω	2.9%	0.30 ± 0.14	0	4.8	μ-ω	2.4%	0.72 ± 0.18	0	4.7

Aug/02/2011 Nufact 2011 15

- Update with 854fb⁻¹ data
 - BaBar; Br<(7-48)x10⁻⁸ at 221fb⁻¹
- 14 modes are investigated (h,h'= π^{\pm} and K $^{\pm}$)
 - $\tau^- \rightarrow \ell^- h^+ h^{\prime-}$: 8 modes (lepton flavor violation)
 - $\tau^- \rightarrow \ell^+ h^- h^{\prime-}$: 6 modes (lepton number violation)

Missing momentum can help to reject this kind of BGs since signal has ν only on tag side. ₁₆

Result for Qhh'

In the signal region

 $e^+K^-\pi^-$

1event : in $\mu^+\pi^-\pi^-$ and $\mu^-\pi^+K^-$

no events: in other modes

⇒ no significant excess/Expected # of BG: 0.06-0.72

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{ m obs}$	s90	\mathcal{B} (10 ⁻⁸)
$ au^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
$ au^- ightarrow e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
$ au^- ightarrow e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
$\tau^- \to \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
$\tau^- \to \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
$ au^- ightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	3.65	8.6
$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
$\tau^- \to \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
$ au^- ightarrow \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8

5.7

2.02

3.2

 $4.00 \quad 0.46 \pm 0.21$

Set upper limits at 90%CL:

Br($\tau \rightarrow \ell hh'$)< (2.0-8.6)x10⁻⁸

→most sensitive results

(preliminary)

Upper limits for τ LFV searched for at Belle.

Reach upper limits around 10⁻⁸ ~100x more sensitive than CLEO Update using full data samples will be finalized soon!

Prospects on LFV at Belle II

SuperKEKB/Belle II

KEKB superKEKB

Vertical β function: 5.9 mm \rightarrow 0.27/0.30 mm (x20)

Beam current: $1.7/1.4 \text{ A} \rightarrow 3.6/2.6 \text{ A} (\times 2)$

 \rightarrow L = 2x10³⁴ cm⁻²s⁻¹ \rightarrow 8x10³⁵ cm⁻²s⁻¹ (x40)

SVD: 4 DSSD lyrs \rightarrow 2 DEPFET lyrs + 4 DSSD lyrs

CDC: small cell, long lever arm

ACC+TOF → TOP+A-RICH

ECL: waveform sampling, pure CsI for end-caps

KLM: RPC → Scintillator +SiPM (end-caps)

Expected luminosity on SuperKEB

Future prospect on tau LFV

- □ Belle-II will collect
 ~10¹⁰ tau leptons. (=50ab⁻¹)
- Sensitivity depends on BG level.
 - Recent improvement of the analysis (BG understanding, more optimized selection)
 - → Improve achievable sensitivity
- B(τ→μγ)~O(10⁻⁹) and
 C(τ→μμμ)~O(10⁻¹⁰) at 50ab⁻¹
 - Improvement of BG reduction is important.
 - Beam BG
 - Signal resolution

Summary

- Belle completed operation with a 1ab⁻¹ data sample, which contains ~10⁹ tau-pairs. This is the world's largest τ data sample.
- By adding more data and studying the dominant BGs and optimizing the analyses to suppress these BGs, we have significantly improved τ LFV upper limits.
 - Almost all upper limits on BF for τ LFV are analyzed with Belle's full data sample and reach O(10⁻⁸).
- Upgrade of KEKB and Belle is in progress and Belle II will start machine operation in the second half of 2014. Finally, a 50ab⁻¹ data sample will be collected. (~2020)
- \square A sensitivity of τ LFV search will reach O(10⁻⁹ $^{-10}$).
 - Optimization for BG reduction is important for future experiment

SuperKEKB

Vertical β function:

5.9 mm (KEKB)

 \rightarrow 0.27/0.30 mm (superKEKB)

(x20)

Beam current:

1.7/1.4 A(KEKB)

 \rightarrow 3.6/2.6 A (superKEKB)

(x2)

 \rightarrow L = 2x10³⁴ cm⁻²s⁻¹ (KEKB)

 $\rightarrow 8x10^{35} \text{ cm}^{-2}\text{s}^{-1}$

(superKEKB) (x40)

Belle II

ECL: waveform sampling, pure CsI for end-caps

KLM: RPC → Scintillator +SiPM (end-caps)