Development of the Superconducting Solenoid for the MuHFS Experiment at J-PARC

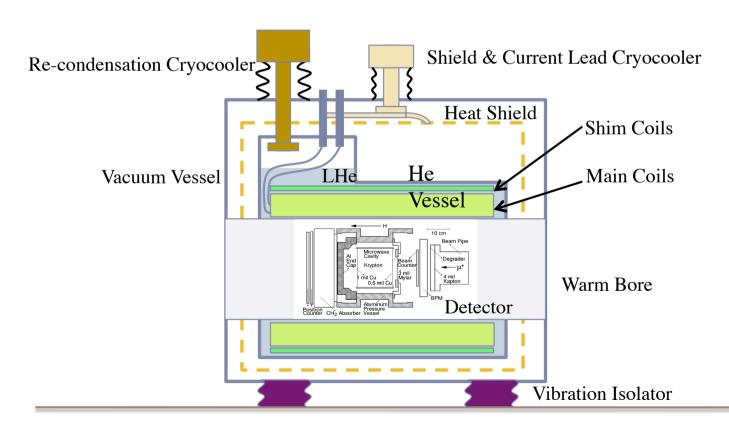
Ken-ichi Sasaki, Michinaka Sugano, Toru Ogitsu, Akira Yamamoto

2011/08/03

- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Cryogenic Design
 - Mechanical Design
- Field Monitoring System
- Summary

Magnet Parameter

- Requirement for HFS
 - Field: I.7 T
 - Local Uniformity : < Ippm</p>
 - Uniform Field Region :
 - Ellipsoid (z:300 mm, r:200mm)


- ▶ Requirement for g-2
 - Field: 3T
 - Local Uniformity : < Ippm</p>
 - Uniform Field Region:
 - Cylindrical(z: ±10 cm, r:28.3 ~ 33.8 cm)

- Future application
 - ▶ HFS at higher field ?
 - etc....

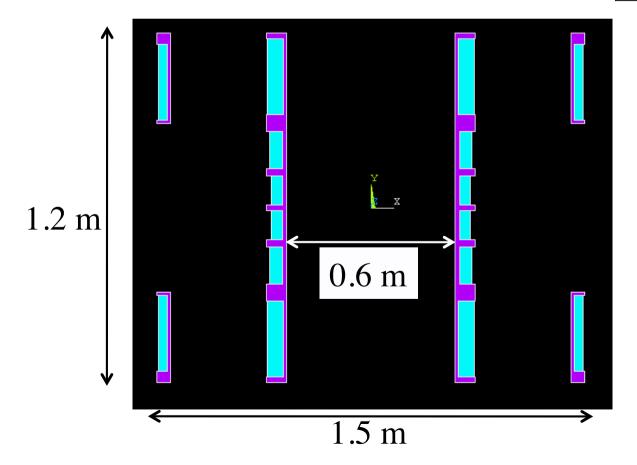
- Target
 - Max. Field: 3.4 T
 - Uniform Field Region :
 - Ellipsoid
 - (z:300 mm, r:200mm)
 - Local Uniformity : < Ippm</p>

Schematic View

- Build the magnet system in-house at KEK
- Design => almost the same as MRI magnet
 - Superconducting Solenoid with shim coils
 - cooled by LHe with re-condensation cryocooler
 - for long term operation
 - Operate in persistent current mode
 - ▶ for long time stability (0.01~0.1 ppm /h)

Superconducting Solenoid Design Step

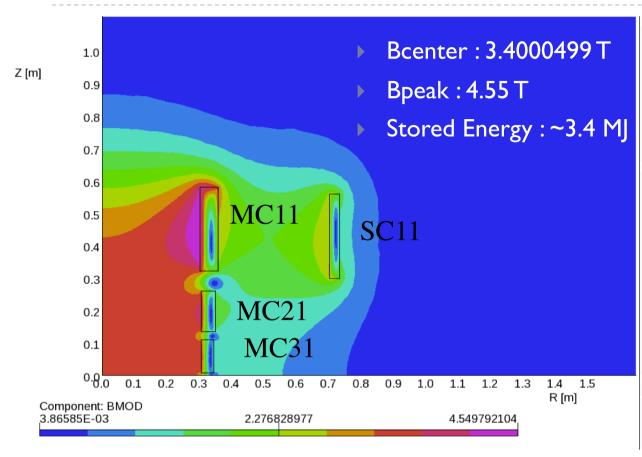
Magnetic Design

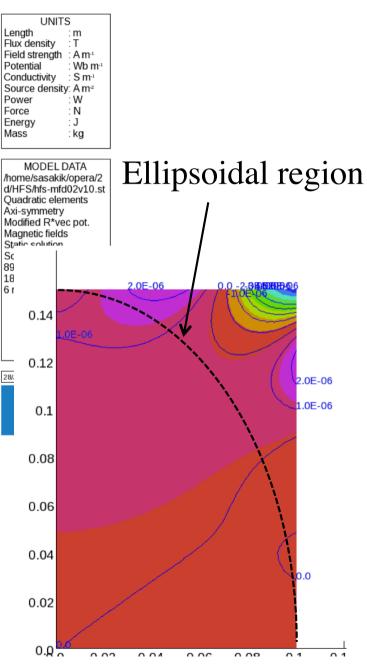

- Main Coil Configuration finished
- ▶ Shim Coils Configuration on going
- Superconducting Design
 - Superconducting Strand Parameters finished
- Cryogenic Design
 - Heat Load Estimation finished
 - ▶ Re-condensation Cryocooler on going
- Mechanical Design on going
- Others
 - Field Monitoring System on going
 - ▶ Test Coil on going

Main Coil Design

Optimized

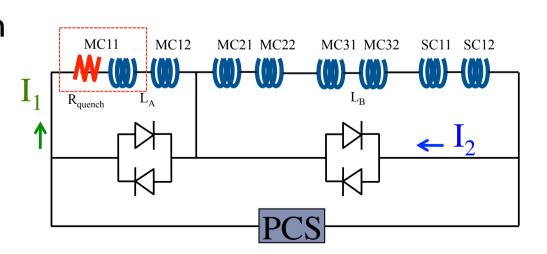
- ► Coil Current Density : I. I e8 A/m²
- ▶ 6 main coils and 2 shielding coils

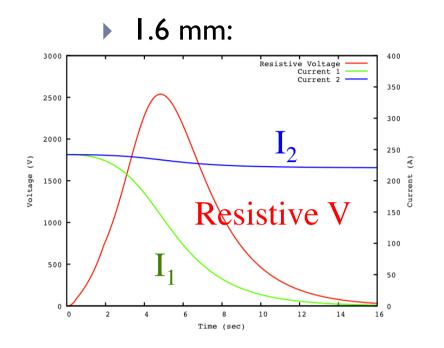

	Bottom Left R	Bottom Left Z	Top Right R	Top Right Z
MC11	0.3	0.321439	0.356258	0.580432
MC12	0.3	-0.321439	0.356258	-0.580432
MC21	0.305	0.134763	0.348547	0.260680
MC22	0.305	-0.134763	0.348547	-0.260680
MC31	0.305	0.008939	0.343476	0.110401
MC32	0.305	-0.008939	0.343476	-0.110401
SC11	0.7	0.3	0.73	0.56
SC12	0.7	-0.3	0.73	-0.56

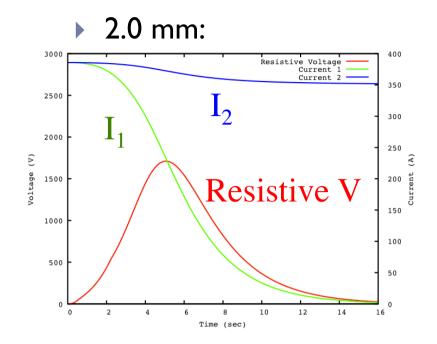

Ideal coil size w/o shim coils

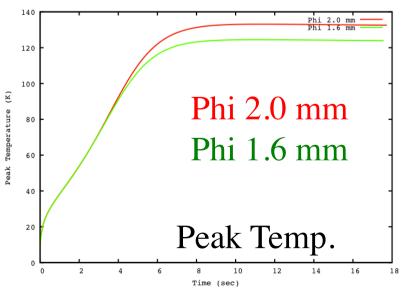
Magnetic Field by Opera 2d

In the Ideal coil size

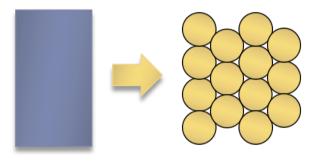

- Error field from magnet center (T)
 - \rightarrow 2e-6 T = 2/3.4 = 0.588 ppm


- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Cryogenic Design
 - Mechanical Design
- Field Monitoring System
- Summary

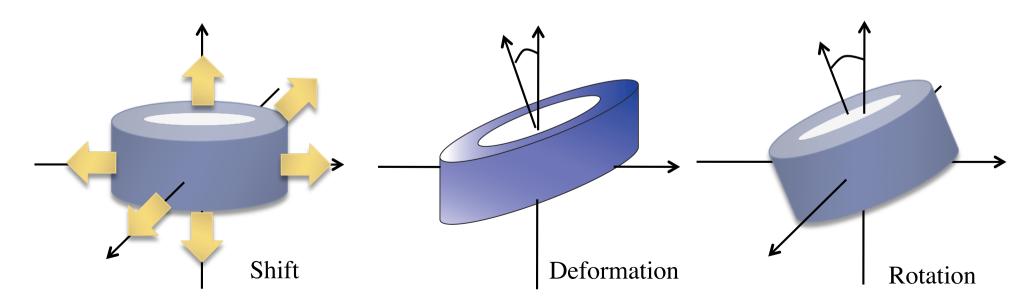

Quench Protection Study


- ▶ To decide the parameters of superconducting cable
 - Quench simulation
 - evaluate Peak Temperature and Peak Voltage in the coil
- Strand parameters for the calculation
 - ϕ I.5(I.6) mm; Insulation thick.: 50 um; Cu/Sc:6; -> L = I47.2 H
 - ϕ 1.9(2.0) mm; Insulation thick.: 50 um; Cu/Sc:6; -> L = 62.9 H
 - Assume simple condition
 - Adiabatic
 - AC loss is neglected
 - Forward V of Diode : 5V
 - Quench starts on MCII

1.6 mm & 2.0 mm Results


- •Peak Temperature: both OK
 - •1.6mm: ~123 K, 2.0 mm: ~132 K
- •Peak Voltage:
 - •1.6 mm : $2500 \text{ V} > 2.0 \text{ mm} : \sim 1600 \text{ V}$

Lower voltage is preferable : $\phi 2.0 \text{ mm}$


- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Cryogenic Design
 - Mechanical Design
- Field Monitoring System
- Summary

Error Field Study

- Evaluated the error field caused by the inaccuracy of the actual winding and structure
 - Non-uniform Current Distribution
 - Position error
 - Deformation
 - Rotation

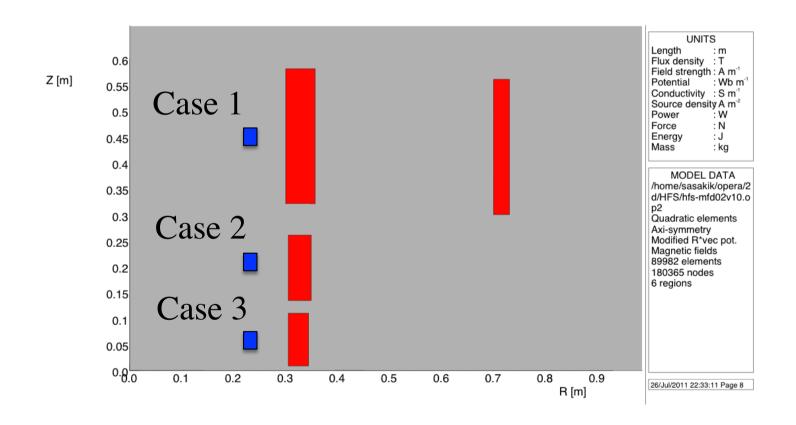
Non-uniform current

Estimated Error Field

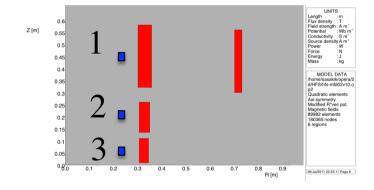
- Peak Error Field by actual winding: ± 2 ppm
- Peak Error Field (ppm / 0.1 mm, ppm/ 0.1 mrad)

	Shift			Deformation	Rotation
	×	У	Z	Deformation	Notation
MC11	-7.7	7.7	-38.7	-1.7	2.1
MC21	-0.3	0.3	45.0	-4.2	-10.6
MC31	10.4	-10.4	332.3	-1.5	-14.0
SC11	0.2	-0.2	0.1	1.2	1.1

Manufacturing Tolerance: 0.1 mm, 0.1 mrad -> 338 ppm


probably inevitable

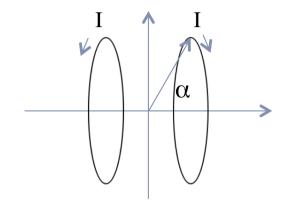
- •Rough correction -> Iron shim
- •Fine correction -> Superconducting Shim Coils


Field Correction by Iron Shim

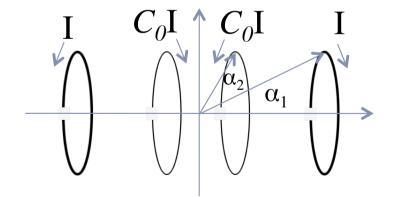
- Estimated the correction power of Iron shim
 - Ring shape
 - ▶ Inner radius 0.42 mm; Cross section: I 0mm x 20 mm

Field Correction by Iron Shim

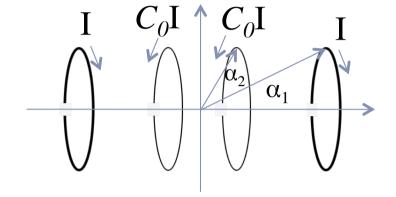
Chia Darita	(ppm)	z ¹	z ²	z^3	z ⁴
Shim Position		A_2^{0}	A_3^0	A_4^{0}	A_5^{0}
Case 1; z=0.47	521	968	1351	349	-5341
Case 2; z=0.18	-91109	-2597	-24598	-90106	-119578
Case 3; z=0.06	465921	-16303	13989	467519	1053708

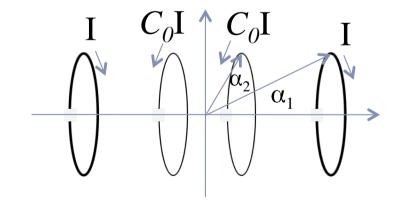

- Spherical harmonics expansion
 - Polar Coordinate

$$B_{z}(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} r^{n-1} (n+m) P_{n-1}^{m}(u) (A_{n}^{m} \cos m\varphi + B_{n}^{m} \sin m\varphi)$$


where, $u = \cos \theta$

Superconducting Shim Coil ~ Zonal Coil Model


- Assume ideal circular current
 - \rightarrow n=I (z^I coil)


 \rightarrow n=3 (z³ coil)

 \rightarrow n=2 (z² coil)

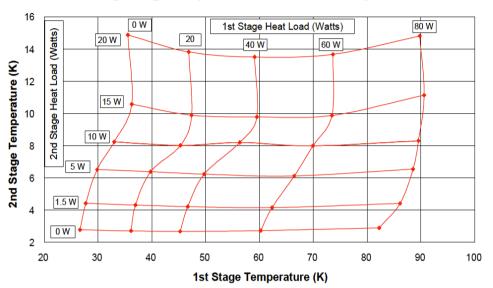
 \rightarrow n=4 (z⁴ coil)

Zonal shim coils could be composed of 2 or 4 circular currents

Zonal Shim coil ~ harmonic coefficient

 $B_z = A_1^0 + 2A_2^0z + 3A_3^0z^2 + 4A_4^0z^3 + \cdots$

Bz on z axis generated by circular currents in radius of 0.4 m


	z1	z2	z3	z4	(z4)
No. of Coil	2	4	4	4	4
α_{1}	49.1066°	40.0889°	33.8782°	29.3385°	53.7222°
α_2	-	73.4273°	62.0404°	53.7222°	77.9187°
C_0	-	0.3033	0.2809	0.2245	0.5603
Length in Z	0.693 m	0.950 m	1.192 m	1.423 m	0.587 m
$A_1^{0}(z^0)$	0	0	0	0	0
$2A_2^{0}(z^{1})$	5.036e-6	0	0	0	0
$3A_3^0(z^2)$	0	10.5698e-6	0	0	0
$4A_4^0(z^3)$	0	0	19.4982e-6	0	0
$5A_5^0(z^4)$	0	0	0	19.0557e-6	-114.652e-6
$6A_6^{0}(z^5)$	-100.95e-6	0	0	0	0
$7A_7^0(z^6)$	0	-265.06e-6	0	0	0

- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Cryogenic Design
 - Mechanical Design
- Field Monitoring System
- Summary

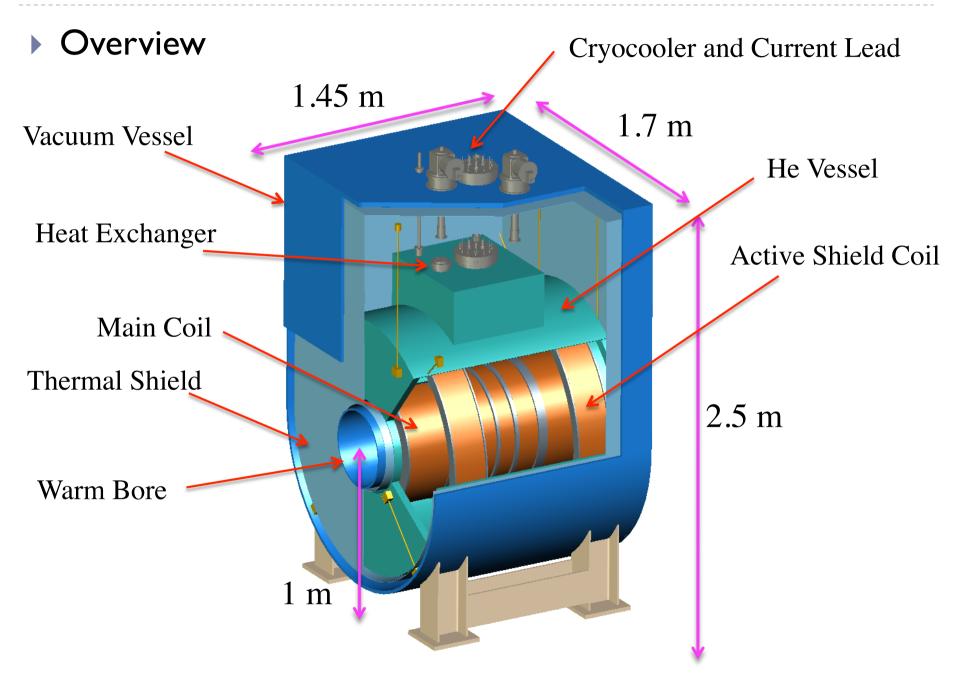
Cryogenic Design

- Heat Load Estimation
 - Conductive Heat
 - ▶ Coil Support Rod
 - Current Leads
 - Radiation Heat

Cooling Capacity Curve of GM Cryocooler

Total Heat Load

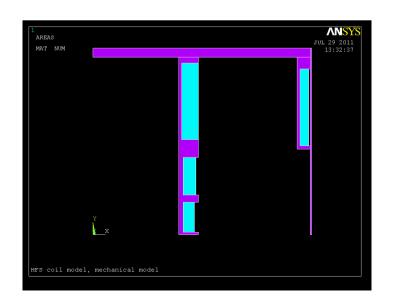
	No. of GM cooler	He vessel	Thermal shield
Case 1	1	1.77 W	75.24 W
Case 2	2	0.62 W	78.63 W

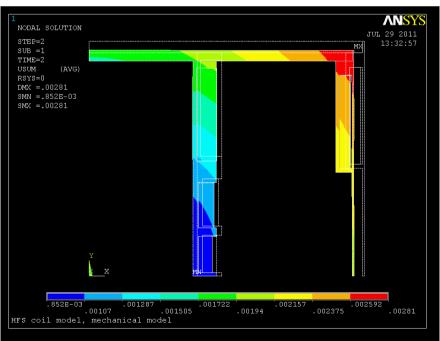


One GM cryocooler -> no enough margin

Two 2-stage GM cryocoolers

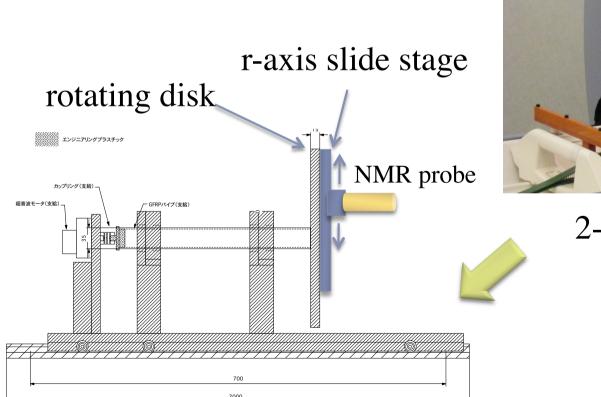
- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Cryogenic Design
 - Mechanical Design
- Field Monitoring System
- Summary

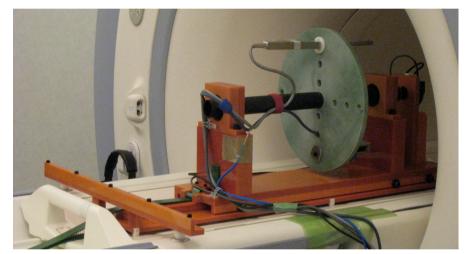

Mechanical Design


Mechanical Design ~ Coil Bobbin Design

- For the precise magnet design
 - must consider coil deformation
 - Winding tension
 - □ 100 ~ 500 um depending on the tension
 - ▶ Thermal contraction during cooling
 - □ ~ 2.8 mm at a maximum
 - ▶ Hoop stress during excitation

□ 27 ~ 30 MPa

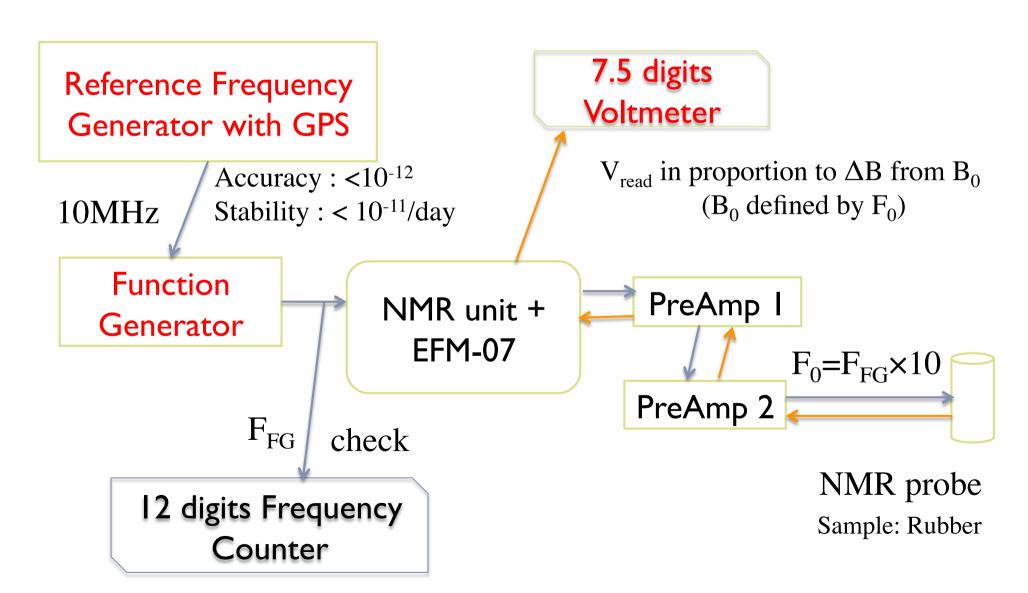




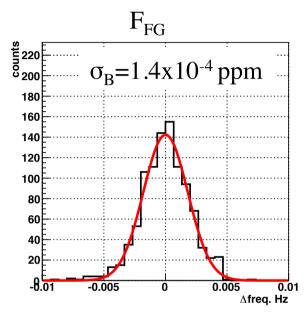
- Magnet
 - Main Coil Design
 - Quench Protection Study
 - Error Field Study
 - Mechanical Design
 - Cryogenic Design
- Field Monitoring System
- Summary

Precise Field Monitoring System

- NMR probe
- Require 3-axis moving stage (r, θ , z)
 - built the prototype stage



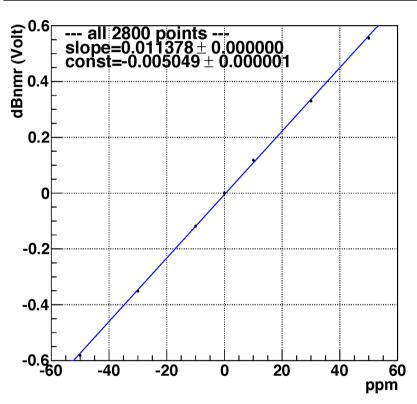
2-axis moving stage (θ, z)

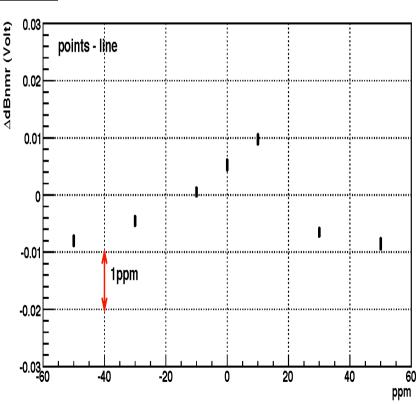

NMR system ~ Connection Diagram

- In order to achieve the high stability and accuracy
 - the frequency of the RF signal to the NMR sample has to be stabilized.

Stability of NMR system in 3T magnet test

▶ Input Frequency: 12,771,271.534 Hz (~ 2.9996145 T)


- RF signal of the function generator seems to be highly stabilized due to the reference frequency generator.
- Deviation of the output voltage is larger than input RF signal.
 - Measurement error of voltmeter.
 - Signal modulation in the NMR unit and the pre amps.


To decrease the noise -> New NMR unit RF signal could inputs directly into the NMR probe

Accuracy of NMR system

The output voltage "must" be linear with the input frequency, when the field is measured at a fixed point.

Correlation between ΔV and ΔF

- Error from the linear regression line : ± 1 ppm
- NMR unit might have any problem in the electrical circuit.
 - -> In the next test, we will investigate the reasons in more detail.

Summary ~ Plan

- Magnet design :
 - Many design steps are steadily proceeded in parallel
 - Main Coil Design: Ideal coil geometry was obtained
 - □ 6 main coils and 2 active shield coils
 - Quench Protection Study
 - \square Strand Diameter : ϕ 2 mm, Cu/Sc = 6
 - ▶ Error Field Study
 - ☐ Manufacturing Tolerance : 0.1 mm, 0.1 mrad -> 338 ppm
 - Mechanical Design
 - □ on going
 - Cryogenic Design
 - □ Estimated heat load -> Two GM cryocoolers are required
 - Field Monitoring System
 - developing the moving stage
 - try to improve the stability and accuracy

Next step

- Test coil winding
 - in this summer
- Shim coil design
 - practical design of zonal shim coils
 - design tesseral shim coil
- Field Monitoring System
 - upgrade the moving and NMR system

Magnet system will be ready in the end of March, 2013