

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna Université catholique de Louvain Centre de Recherches du Cyclotron Louvain-la-Neuve

Collection device : status report

Semen Mitrofanov Marc Loiselet Thierry Delbar

Centre de recherches du Cyclotron Université Catholique de Louvain

LLN RIB typical intensities **after** post-acceleration **and** isobaric separation on experimenter's target.

Noble gases or extraction as molecules

Element	T _{1/2}	q	Energy Range [MeV]	Intensity [pps]*	
6Helium 0.8 s		1+ 5.3 - 18		1.107	
		2+	30 – 73	3·10 ⁵	
7Beryllium	53 days	1+	5.3 - 12.9	2.107	
		2+	25 - 62	4.106	
10Carbon	19.3 s	1+	5.6 - 11	2.105	
10 P. C. M. C.		2+	24 - 44	1 104	
11Carbon	20 min	1+	6.2 - 10	1.107	
13Nitrogen	10 min	1+	7.3-8.5	4·10 ⁸	
		2+	11 - 34	3-108	
		3+	45 - 70	1-108	
15Oxygen	2 min	2+	10 - 29	6·107	
18Fluorine	110 min	2+	11 – 24	5.106	
18Neon	1.7 s	2+	11 – 24	1.107	
		3+	24 - 33, 45 - 55	4·10 ⁶	
¹⁹ Neon	17 s	2+	11 – 23	2·109	
		2+	7.5 - 9.5	5.10º (CYC44)	
		3+	23 - 35, 45 - 50	1.5.109	
		4+	60 - 93	8-108	
³⁵ Argon	1.8s	3+	20-28	2·106	
		5+	50 - 79	1.105	

Li+1

cavity

HE

Collection device task:

- To build the prototype of the collection device and test it on-line.
- To measure the extraction efficiency for Li-8. \checkmark
- To study extraction technique of B-8.

* From Rubbia.

Collection device - what is it 💦

Scheme: beam->target->catcher->diffusion + effusion-> ⁸Li detection

What we should do to realize it

CRC

R&D stages:

- produce ⁸Li in deuterium target
- stop and catch ⁸Li in stopper
- extract ⁸Li from the catcher
- detect and count $\,\beta$ decay of ⁸Li

Main goal now is:

We should start from ⁸Li to make all tests and probe the whole system

R&D stages:

- 1. The key points for ⁸Li production (our tests)
 - ⁷Li beam energy 29 MeV (energy losses in the target)
 - intensity starting point 1 pnA
 - deuterium or CD₂ targets
 - kinematics => narrow output angular cone for the ⁸Li

material	thickness	E _{loss} , MeV	E _{remain} , MeV
Au (gold)	1.85 mg/cm ² (0.96 μm)	0.54	28.46
Cu (copper)	8.92 mg/cm ² (10 μm)	4.4	24.1
D (deuterium)	0.25 mg/cm ² (15000 μm)	0.29	23.8
Ta (tantalum)	16.6 mg/cm ² (10 μm)	6.1	17.7

2. Stop and Catch

- tantalum foils with 20x2µm thickness
- toroidal geometry (future)

R&D stages:

 \bullet ohmic heating up to 1400°

- 4. Detection
 - catch the ⁸Li on "cold finger"
 - detect the β decay of ⁸Li using scintillators
 - measuring ΔE , E, time structure, counting
 - ⁷Li beam intensity measurement (PIPS detector)

Collection device - efficiency measurement

• All details are the same (in comparison with "Oven" setup)

What was done

Point by point ...

Point #1 Beam and target preparation

•Modification of the ECR-source for the production of Li ions.

•Update of the beam line.

•Update of the experimental area.

•On-line tests with the primary beam (intensity up to 10nA)

•Target R&D, tests

What was done

Point #2. Catcher-oven research and design

- •Development of temperature tests and design
- •Technical drawings
- •Material (Ta) shopping
- •Manufacturing of the oven-catcher unit
- Offline tests

What was done

Point #3 Assembling of the experimental setup, tests.

Assembling of the oven-catcher unit in the laboratory and Igloo R tests.
Off-line (laboratory) temperature and vacuum tests of the experimental setup.
On line (Igloo R) tests with the primary beam(intensity up to 0.7 nA).

Fresh....

Only mechanics ? No...but....

· Go further with ohmic heating

- we hoped to finished with Li-8: June'11 update September'11 (September - 3 beam runs, October - 1 run)
- Prototype design study/Prototype technical drawings for the B-8: June'11-September'11
- Workshop (pcs machining) September-October'11
- Off-line + on-line tests for B-8: fall'11
- B-8, the goal is to be fully prepared in December'11

- it will be ${}^{8}BF_{3}$ molecule production: ${}^{8}B+AIF_{3}={}^{8}BF_{3}$
- we will test pure boron diffusion
- Detect the decay of B

Now the B setup is under construction and drawing

- The runs are scheduled for the November'11 and December'11
- Spring'12 full time measurements for Boron.

Few words about future... who knows...

Sketch of the future Far in the future in a galaxy far, far away.....

Price & cost - up to 10 M€

Université catholique de Louvain Centre de Recherches du Cyclotron Louvain-la-Neuve

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research Dubna

Thank You for Your attention

Collection device : status report

Semen Mitrofanov Marc Loiselet Thierry Delbar

