"Set the scene" WG2: Neutrino cross-section

WG2 conveners: Mike Kordosky, Juan Nieves, Masashi Yokoyama

NUFACTII, Aug I-6 2011, Geneva

Neutrinos and interaction

- Neutrinos interact only through weak interaction
- Theory of weak interaction:WELL established
 - Electroweak theory: triumph of Standard Model

$$\mathcal{L}_{N} = eJ_{\mu}^{em}A^{\mu} + \frac{g}{\cos\theta_{W}}(J_{\mu}^{3} - \sin^{2}\theta_{W}J_{\mu}^{em})Z^{\mu}$$

$$\mathcal{L}_{C} = -\frac{g}{\sqrt{2}}\left[\overline{u}_{i}\gamma^{\mu}\frac{1-\gamma^{5}}{2}M_{ij}^{CKM}d_{j} + \overline{\nu}_{i}\gamma^{\mu}\frac{1-\gamma^{5}}{2}e_{i}\right]W_{\mu}^{+} + h.c.$$

• Why need to worry?

(from Wikipedia)

Why do we care V cross section

- Motivated by neutrino oscillation experiments
 - atmospheric and long baseline
- $\Delta m^2 \sim 10^{-3} \text{eV}^2$ with 100-1000km baseline $\rightarrow E_V \sim \text{GeV}$
 - v-N interaction
 - Contribution from multiple channels
 - Limited knowledge from old experiments

Why do we care V cross section

- Massive detector with heavy material
 - C, O, Ar, Fe, Pb, ... not H, D
- Interaction with bound nucleon
 - Modification to cross section
- FSI effect in nucleus
 - Hadron interaction in nuclear matter

Uncertainties combo

- Neutrino flux / energy spectrum
 - Normalization
 - Energy dependence
- Nuclear effects
 - Cross-section modification
 - Migration between channels
- Limited detector acceptance / resolution

Experimentally not easy to untangle in many cases

Importance of neutrino interaction: an example

T2K first result on Ve appearance

		PRL 107, 041801 (2011)
Source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
(1) neutrino flux(2) near detector	$\pm 8.5\%$ $^{+5.6}_{-5.2}\%$	±8.5% +5.6 % -5.2
(3) near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$
(4) cross-section	$\pm 14.0\%$	$\pm 10.5\%$
(5) far detector Total $\delta N_{\rm SK}^{\rm exp}/N_{\rm SK}^{\rm exp}$	$\pm 14.7\%$ $^{+22.8}_{-22.7}\%$	$\pm 9.4\%$ +17.6 % -17.5

- Need to reduce uncertainty
 - ← better knowledge of cross section
- Will continue to be true for future measurements (anti-neutrino, V_e vs V_{μ} , and more ..)

Growth of field over past decade

- In situ measurement with oscillation expt's
 - K2K, MiniBooNE, NOMAD, MINOS, T2K, ..
- Dedicated experiments
 - SciBooNE, MINERvA, ArgoNeuT, ..
- Hadron production (reducing flux error)
 - HARP, MIPP, SHINE, ...
- Pion scattering (nuclear FSI) measurements
- Theoretical developments

Near detectors of LBL exp'ts

Dedicated exp'ts

Hadron production experiments

From WG2 summary @ NUFACT10

- It's much more complex than we thought...
- We learned a lot, but at the same time many questions have been raised.

What do we need to go further?

- Need a joint effort of
 - Experimentalist and theorist
 - Particle physics and nuclear physicists
- Recently growing consensus from close discussion:
 model independent (as much as possible) presentation of data
 - Example: MiniBooNE double differential cross section (observed muon kinematics).
- NuFact WG2 is one of central forums to exchange new info and ideas for further progress!

WG2 program

- Latest results from experiments
 - New for this year:
 MINERvA, T2K, ArgoNEUT
- Latest theoretical developments
- Interaction simulation
- Flux determination
- Detector technology (joint with WGI)
 - + Plenary talks on Thursday morning

Looking forward to lively discussion during sessions!

- Session #1 (Mon 14:00-)
 - MiniBooNE cross-section results
 - SciBooNE
- Session #2 (Tue 13:30-)
 - M_A from MiniBooNE CCQE double differential cross section data
 - The role of 2p2h in CCQE
 - Electron vs Neutrino-Nucleus Scattering
 - Axial and Vector Structure Functions for Lepton-Nucleon Scattering

- Session #3 (Wed 11:00-)
 - CC and NC coherent pi production
 - NuWro: Monte Carlo generator of neutrino interactions
 - Monte Carlo generators: NEUT and GENIE
- Session #4 (Wed 14:00-)
 - Measurement of π-N interaction: PIAVO-Harpsichord
 - Performance of T2K Near Detectors
 - MINERvA reconstruction & performance

- Session #5 (Thu 11:00-)
 - Neutrino interaction measurements using T2K Near Detectors
 - MINERvA Elastic Scattering
 - MINERvA CC inclusive & nuclear target
- Session #6 (Thu 14:00-)
 - NA61: pion production cross-sections and plans
 - NA61: Strange particle prodiction
 - NA61: Long target results
 - FLUKA: hadron production simulation
 - Predicting neutrino flux for T2K
 - NuMI (MINERvA) flux prediction

- Session #7 (Fri 13:40-)
 - Neutrino nucleus reactions at high energies within the GiBUU model
 - Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses
 - Gamma-ray production in NC interactions
 - Argoneut
- Session #8 (Fri 16:00-)
 - Joint detector session w/WGI

Let's come up with new ideas. See you at WG2!

Backup

Quasi elastic scattering

• The simplest channel:

$$V + n \rightarrow l + p$$

- Energy reconstruction from lepton kinematics
- Thought as 'robust' channel, however...

18

Quasi elastic scattering

- Much effort to explain by changing form factor (e.g. M_A).
- Recent realization: contribution from multinucleon correlations?
 - Effect seen in e-N scattering
 - Can be as large to explain MB/NOMAD discrepancy.
- What we call "QE" may depend on detector/analysis.

Science 320 1476(2008)

Coherent pion production

- Neutrino interaction with $\cdots \rightarrow N$ whole nucleus rather than each nucleon.
- Experiments with higher energy well described with a model by Rein and Sehgal
- Recent measurements in ~GeV have revealed some puzzle..
 - K2K, SciBooNE, MiniBooNE, NOMAD
 - CC/NC ratio << model prediction at ~IGeV

Discussion over past 5 years, still a mystery...