Long-Range Lepton Flavor Interactions and Neutrino Oscillations

[with H. Davoudiasl and W. Marciano (PRD 2011)]

Hye-Sung Lee (Brookhaven National Lab)

NuFact 2011 (CERN/UNIGE, August 2011)

OFERMILAB #98-1321D

Goal of this talk

MINOS ν_{μ} and $\bar{\nu}_{\mu}$ disappearance experiments.

 $(L = 735 \text{ km}, E_{\nu} \sim \text{GeV scale})$ $|\Delta m^2|$ and $|\Delta \overline{m}^2|$ (10⁻³ eV²) MINOS **⊽**, 90% MINOS v₁₁ 90% 6 ---- MINOS ν_μ 68% MINOS v. 68% Best ⊽" Fit Best v_u Fit $\bar{\nu}$ \mathcal{V} 1.71×10²⁰ POT $7.24 \times 10^{20} \text{ POT}$ 5 $|\Delta m^2| < |\Delta \bar{m}^2|$ $\sin^2(2\theta) > \sin^2(2\overline{\theta})$ [MINOS Collaboration] arXiv:1104.0344 0.5 0.6 0.8 0.7 0.9 $\sin^2(2\theta)$ and $\sin^2(2\overline{\theta})$

Likely due to statistics ($N_{\nu} \sim 2000$, $N_{\bar{\nu}} \sim 100$). Yet, it could be a hint of New Physics that can affect ν oscillation (differently for ν and $\bar{\nu}$).

In this talk, we go over a possible explanation and discuss its implications for other ν experiments.

<u>Outline</u>

- Long-Range Interaction & ν oscillation
- Implication for atmospheric ν at IceCube DeepCore (ongoing)
- Implication for Future Long Baseline ν experiments
- Brief comment on the implications for the charged lepton sector

What type of New Physics?

$$H = H_{\text{vac}} + H_{\text{SM}}$$
$$H_{\text{SM}} = V_W(1, 0, 0) + V_Z(1, 1, 1)$$

with $V_W = \sqrt{2}G_F n_e$, $V_Z = -\frac{G_F}{\sqrt{2}}n_n$

Flavor-universal potential (such as Z boson effect) is irrelevant to ν flavor oscillation.

We will consider a Lepton Flavor Long-Range Interaction (LRI):

(i) lepton flavor-dependent U(1)', (ii) almost massless gauge boson Z'.

$$H_{\rm LRI} = V_{Z'}(Q_e, Q_\mu, Q_\tau)$$

(No sterile ν , No CPT violation, etc.)

Related works

Some related works prior to our study: LRI effects on ν oscillation, MINOS anomaly explanation with a new interaction, etc.

Joshipura, Mohanty (2003); Grifols, Masso (2003); Gonzalez-Garcia, Holanda, Masso, Funchal (2006); Bandyopadhyay, Dighe, Joshipura (2006); Engelhardt, Nelson, Walsh (2010); Mann, Cherdack, Musial, Kafka (2010); Kopp, Machado, Parke (2010); Heeck, Rodejohann (2010); · · · Effective u_{μ} survival probability in 2-flavor ($u_{\mu} -
u_{\tau}$) oscillation

Joshipura, Mohanty (2003)

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2(2\tilde{\theta}_{23})\sin^2\left(\frac{\Delta \tilde{m}_{23}^2 L}{4E_{\nu}}\right)$$

with effective mass splitting and mixing angle under New Potential

$$\begin{split} \Delta \tilde{m}_{23}^2 &= \Delta m_{23}^2 \sqrt{[\xi - \cos(2\theta_{23})]^2 + \sin^2(2\theta_{23})} \\ \sin^2(2\tilde{\theta}_{23}) &= \sin^2(2\theta_{23}) / \left([\xi - \cos(2\theta_{23})]^2 + \sin^2(2\theta_{23}) \right) \\ \xi &\equiv -\frac{2W_\tau E_\nu}{\Delta m_{23}^2}, \quad W_\tau = Q_\tau V_{Z'} \text{ (potential energy, in } \nu_\mu - \nu_\tau \text{)} \end{split}$$

(In analogy of the standard matter effect in ν_e oscillation: $\xi = \frac{2\sqrt{2G_F n_e E_{\nu}}}{\Delta m^2}$) ξ flips sign for $\bar{\nu}$ causing different effects on ν and $\bar{\nu}$ unless $\sin^2(2\theta_{23})=1$.

LRI should be extremely weak

T.D. Lee & C.N. Yang (1955): LRI gets constraints from Eötvös-type expt.

 $\alpha' < 10^{-47}$ (baryons), $\ \alpha' < 10^{-49}$ (leptons) $\$ Okun, Dolgov (1990's)

LRI needs large (astronomical) source to have sizable effects.

We assume $m_{Z'} \lesssim \frac{1}{AU} \sim 10^{-18} \ {\rm eV}$ to include the Sun (but not much smaller).

$$\begin{aligned} & \frac{U(1)' \text{ charge}}{Q = a_0(B - L) + a_1(L_e - L_\mu) + a_2(L_e - L_\tau) + a_3(L_\mu - L_\tau) \\ & : \text{ a linear combination of anomaly-free gauge symmetries} \end{aligned}$$

We choose $Q = (B - L) + (L_{\mu} - L_{\tau}) = B - L_e - 2L_{\tau}.$ $H_{\rm LRI} = V_{Z'}(-1, 0, -2)$

(Neutrons in the Sun and the Earth are the source of New Potential. Flavor-dependent charges affect ν oscillation.)

Astronomical source of New Potential

Sun (
$$\odot$$
) $\leftarrow r \rightarrow \text{Earth}(\oplus)$
 $(N_n^{\odot} = 1.7 \times 10^{56})$ $(N_n^{\oplus} = 1.8 \times 10^{51})$
 $V_{Z'} = \alpha' \left(\frac{N_n^{\odot}}{r} + \frac{N_n^{\oplus}}{R_{\oplus}}\right) = \left(\frac{\alpha'}{10^{-50}}\right) \times \left(\frac{AU}{r} + 0.25\right) \times (2.2 \times 10^{-12} \text{ eV})$
 $\sim \left(\frac{\alpha'}{10^{-50}}\right) \times \mathcal{O}(10^{-12} \text{ eV})$

(1) Since the MINOS ν oscillation is relevant to $\frac{\Delta m_{23}^2}{E_{\nu}} \sim \mathcal{O}(10^{-12} \text{ eV})$, LRI with $\alpha' \sim \mathcal{O}(10^{-50})$ level can affect MINOS experiments. (In other words, ν oscillation is a good probe of an extremely weak LRI.) (2) Annual modulation in New Potential due to $r = (1.47 \sim 1.52) \times 10^8 \text{ km}$

Our fit to MINOS data with LRI

$$\begin{split} \Delta m_{23}^2 &= 2.4 \times 10^{-3} \,\mathrm{eV}^2 \\ \sin^2(2\theta_{23}) &= 0.9 \\ \alpha' &= 1.0 \times 10^{-52} \quad (\text{or } W_\tau = 5.6 \times 10^{-14} \,\mathrm{eV}) \\ (\alpha' \leqslant 5 \times 10^{-52} \text{ at } 3\sigma \text{ level}) \end{split}$$

Using simplified MINOS data from Kopp, Machado, Parke (2010). Not positively ruled out by solar+KamLAND ν and atmospheric ν data. (There is a tension between the potential for MINOS data and SK atmospheric ν data though.)

Note: The best-fit does not really improve MINOS data fitting, but we take it a motivated benchmark point to explore other experiments to test the LRI idea.

(Optional slide) Constraints MINOS best-fit: $\alpha' = 1.0 \times 10^{-52} \rightarrow W_{\tau} = 5.6 \times 10^{-14} \text{ eV}$ (cf. $\alpha' = 0.5 \times 10^{-52} \rightarrow W_{\tau} = 2.8 \times 10^{-14} \text{ eV}$)

(1) Solar+KamLAND ν data constraints on LRI:

 $\alpha' \lesssim 5 \times 10^{-52}$ (at 3σ)

Gonzalez-Garcia, Holanda, Masso, Funchal (2006); Bandyopadhyay, Dighe, Joshipura (2006)

(2) Atmospheric ν data (Super-Kamiokande):

$$W_{ au}=\epsilon_{ au au}\sqrt{2}G_F n_e$$
. $\epsilon_{ au au}\lesssim 0.2$ (at 95% CL)

Friedland, Lunardini, Maltoni (2004)

It depends on n_e (electron number density). In the core ($R \leq 3400 \text{ km}$): $n_e \approx 12 \text{ g/cm}^3$ ($W_\tau \leq 9 \times 10^{-14} \text{ eV}$) In the mantle ($R \gtrsim 3400 \text{ km}$): $n_e \approx 5 \text{ g/cm}^3$ ($W_\tau \leq 4 \times 10^{-14} \text{ eV}$) Where are good places to test LRI?

LRI effects on ν oscillations are energy-dependent.

The effects on ν (red solid) and $\overline{\nu}$ (green dashed) are different.

 ν and $\bar{\nu}$ are the same in standard oscillation (black dotted).

DeepCore: 6 additional densely instrumented strings + 7 IceCube strings. Recently commissioned. Running and taking data now.

"Analysis of the first year DeepCore data is in progress" F. Halzen (NuFact'11). $\mathcal{O}(10^5) \nu_{\rm atm}$ / year in $E_{\nu} \approx 1 - 100 \, {\rm GeV}$ triggered.

Complementary to IceCube (optimized for $E_{\nu} \gtrsim 10 \text{ TeV}$).

LRI effects on atmospheric ν_{μ} at DeepCore

We assume $\nu: \bar{\nu} = 2:1$, isotropic flux, zenith angle $0.7\pi \leq \phi \leq \pi$.

Red solid: $\alpha' = 1.0 \times 10^{-52}$ (MINOS best-fit)

(with different input values)

(Red dashed: $\alpha' = 0.5 \times 10^{-52}$, Red dotted: $\alpha' = 0.1 \times 10^{-52}$)

 \rightarrow LRI effect on atmospheric ν_{μ} can be quite distinct at DeepCore.

Annual modulation at DeepCore (due to Sun-Earth distance variation)

Annual modulation effect $\left|\frac{N_a - N_p}{N_a + N_p}\right|$ (events in summer – winter) ($15 < E_{\nu} < 30 \text{ GeV}$, 120 days for each season, for uniform flux). MINOS best-fit ($\alpha' = 10^{-52}$): Total 2700 events (1 year). 1.2% seasonal variation.

 \rightarrow Annual modulation at DeepCore can point the Solar origin of New Potential.

- L = 1300 km, 200 kton Water Cherenkov detector
- 5-years run unoscillated beam profile from M. Diwan's talk at DURA annual meeting (2010)

MINOS best-fit (red solid): For $E_{\nu} \sim \mathcal{O}(\text{GeV})$, ν_{μ} has less events ($\bar{\nu}_{\mu}$ has more events) than the standard oscillation (solid black).

 \rightarrow DUSEL can tell the different LRI effects on ν and $\bar{\nu}.$

Annual modulation at DUSEL

Annual modulation effect $\left|\frac{N_a - N_p}{N_a + N_p}\right|$ for accelerator ν_{μ} at Long Baseline. ($2 < E_{\nu} < 3 \text{ GeV}$, 180 days for each season, for uniform flux). MINOS best-fit ($\alpha' = 10^{-52}$): Total 1100 (ν_{μ}), 2100 ($\bar{\nu}_{\mu}$) events (5 years) with 0.5%, 0.4% seasonal variation.

 \rightarrow We may need enhanced capability to see annual modulation.

Comment on the implication of the LRI for the charged lepton sector Lepton flavor-dependent U(1)' gauge symmetry with nearly massless Z' implies

(1) Z'-mediated FCNC at tree-level is present, in general.

: For instance, μ -e-Z' vertex may exist in mass eigenstate.

(2) Even for tiny coupling ($\alpha' \leq 10^{-50}$), its effect is not negligible, *in general*. : $\mu \to eZ'$ decay is enhanced since $m_{Z'} \ll m_{\mu}$ (Goldstone boson equivalence theorem). $\Gamma(\mu \to eZ') \sim \alpha' m_{\mu} \left(\frac{m_{\mu}^2}{m_{Z'}^2}\right)$, not $\Gamma \sim \alpha' m_{\mu}$.

Here, "in general" means that it depends on the Higgs sector.

Explicit model buildings with Higgs sector should address this. (For instance, separate Higgses for ν and ℓ^{\pm} sectors as in SUSY or 2HDM).

Summary

- 1. MINOS data (difference in ν_{μ} and $\bar{\nu}_{\mu}$): a possible hint for New Physics which distinguishes ν and $\bar{\nu}$.
- 2. Lepton Flavor LRI with $\alpha' \sim 10^{-52}$ is a possibility. (ν oscillation is sensitive to Lepton Flavor LRI.)
- 3. IceCube DeepCore (ongoing expt.): can test LRI possibility. Annual modulation (percent-level) can point solar origin of New Potential.
- 4. DUSEL (future expt.): can tell difference of LRI effects on ν and $\overline{\nu}$.
- LRI effect on the charged lepton sector is not negligible, in general.
 (It depends on the explicit Higgs sector model building.)
 - Thank you -