Long Baseline Experiments in Europe within LAGUNA

P. Coloma

Based on a collaboration with Tracey Li and Silvia Pascoli

NuFact'11, Geneva August 1st - 6th 2011

Based on a collaboration with Tracey Li and Silvia Pascoli

NuFact'11, Geneva August 1st - 6th 2011

Outline

- Introduction to LAGUNA sites and detectors
- Fluxes and statistics
- Simulation details
- Comparative results
- Robustness of the results
- Conclusions

Pilar Coloma – SuperBeams in Europe

LAGUNA sites and detectors

- Main goals of LAGUNA:
 - Proton decay
 - Supernovae neutrinos
 - Terrestrial (geo- ,reactor), solar and atmospheric v's
- LAGUNA needs a multi-purpose (very massive) underground detector. Considered technologies are:
 - GLACIER: 100 kton LAr A. Rubbia, 0908.1286 [hep-ph]
 - LENA: 50 kton Liqu. Scintillator M. Wurm, 1104.5620 [astro-ph.IM]
 - **MEMPHYS**: 440 kton WC A. de Bellefon et al, hep-ex/0607026

Pilar Coloma – SuperBeams in Europe

NuFact'11 - Geneva

D. Angus et al, 1001.0077

[physics.ins-det]

LAGUNA sites and detectors

7 possible underground sites capable of hosting a very massive neutrino detector in Europe

Pilar Coloma – SuperBeams in Europe

Statistics and fluxes

Optimized fluxes for a good sensitivity to θ_{13} L/E matching 1st peak

Pilar Coloma – SuperBeams in Europe

Statistics and fluxes

Optimized fluxes for a good sensitivity to θ_{13} L/E matching 1st peak

L > 130 km (2.4 MW) $3 \times 10^{21} \text{PoT yr}^{-1}$ $E_p = 50 \text{GeV}$ 10^7sec yr^{-1}

(provided by A. Longhin) 1106.1096 [physics.acc-ph]

Pilar Coloma – SuperBeams in Europe

Simulation details

Pilar Coloma – SuperBeams in Europe

General details

- All simulations using GLoBES 3.0 software hep-ph/0701187
- Marginalization over:
 - solar (4%) and atmospheric (10%) parameters
 - over matter density (2%) hep-ph/0305042
- Best-fit values according to Schwetz et al, 1103.0734 [hep-ph]
- Running times:
 - 2+8 for L=130 km;
 - 3+7 for longer baselines

Pilar Coloma – SuperBeams in Europe

Backgrounds & Systematics

- Intrinsic backgrounds (we assume a ~50% may pass detector cuts). Ways out:
 - off-axis \rightarrow not good for very long baselines
 - <u>near detector</u>
- Systematics of 5% on signal and background
 - may be further reduced with a <u>near detector</u>
- NC background $(?) \rightarrow$ naive guessing

Pilar Coloma – SuperBeams in Europe

Detector details

Detector	M (kton)	ϵ_{CC}	ϵ_{QE}	NC backgr.	$\sigma(E)$
GLACIER	100	90%	80%	0.5%	Migr. Matr.
LENA	50	90%	70%~(e)	[0.5,5]%	0.05E
			$85\%~(\mu)$		
WC $(L = 130)$	440	$\sim 70\%$	$\sim 70\%$	[0.065 - 0.25]%	Migr. Matr.
WC $(L > 130)$		40%	40%	Rej. Effs.	Migr. Matr.

Campagne et al, hep-ph/0603172 Barger et al, 0705.4396 [hep-ph] Info from: A. Rubbia, L. Esposito, J. Peltoniemi, R. Mollënberg, M. Wurm, L. Whitehead, B. Choudhary, N. Vassilopoulos...

Comparative results (baselines and detectors)

Pilar Coloma – SuperBeams in Europe

Sensitivity to θ_{13} : LAr

 $\sin^2 2\theta_{13}$

Pilar Coloma – SuperBeams in Europe

Sensitivity to θ_{13} : LAr

 $\sin^2 2\theta_{13}$

Pilar Coloma – SuperBeams in Europe

CP discovery potential: LAr

Pilar Coloma – SuperBeams in Europe

CP discovery potential: LAr

Pilar Coloma – SuperBeams in Europe

CP disc. pot.: Liquid Scintillator

LENA results also quite good even though only 50 kton

CP disc. pot.: Liquid Scintillator

Pilar Coloma – SuperBeams in Europe

CP discovery potential: WC

WC is optimal for very low energies \rightarrow much better results at L=130 km

Pilar Coloma – SuperBeams in Europe

CP discovery potential: WC

WC is optimal for very low energies \rightarrow much better results at L=130 km

Sensitivity to mass hierarchy

180180 Key factor here: LAr 2300 1570 matter effects 90 90 1050 950 Results almost ^{\overline \lambda \lam} 0 665 0 130 independent -90 -90Large L from detector GLoBES 3.0 technology -180-180 10^{-2} 10^{-3} $\sin^2 2\theta_{13}$

Pilar Coloma – SuperBeams in Europe

Sensitivity to mass hierarchy

180180F Key factor here: LAr 2300 1570 matter effects 90 90 1050 950 Results almost ^{\circ} 0 665 0 130 independent -90-90from detector GLoBES 3.0 technology -180180 10^{-2} 10^{-3} $\sin^2 2\theta_{13}$

Pilar Coloma – SuperBeams in Europe

Influence of specific simulation details in our results

Results shown for the Phyasalmi baseline, but similar dependence expected for the rest of baselines

Pilar Coloma – SuperBeams in Europe

Small vs large θ_{13}

- Relevant factors if θ_{13} is small:
 - beam background levels
 - background systematics
- Relevant factors if θ_{13} is large:
 - QE event sample
 - signal systematics
- <u>Always</u> relevant:
 - NC backgrounds

Pilar Coloma – SuperBeams in Europe

NC background in Liquid Scintillator

Pilar Coloma – SuperBeams in Europe

Intrinsic beam backgrounds in LAr

Pilar Coloma – SuperBeams in Europe

QE efficiencies in LAr

Pilar Coloma – SuperBeams in Europe

Systematic errors in LAr

Pilar Coloma – SuperBeams in Europe

Conclusions

- We have studied 7 possible sites for a very massive neutrino detector in Europe and three different technologies:
 - In general, very good results for all detector technologies and observables
 - Mass hierarchy prefers longer baselines, though
 - LAr and WC show very good performance: is magnetization possible for LAr?
 - Liquid Scintillator:
 - statistically limited
 - NC background rejection capability is uncertain

Pilar Coloma – SuperBeams in Europe

Conclusions

- Strategy strongly depends on future results at T2K/MINOS
 - if θ_{13} very large, effort would have to be done to improve CP and and mass hierarchy discovery potential
- SuperBeams are very well-known but...
 - A detailed estimation of systematics is a priority at this point!!

BACKUP

Pilar Coloma – SuperBeams in Europe

Systematic errors in LAr

Pilar Coloma – SuperBeams in Europe

Detectors

GLACIER

(arXiv:0705.4396 [hep-ph])

- 100 kton fiducial mass
- Bin size: 0.15 0.25 GeV
- Emin = 100 MeV
- Migration matrices (L. Esposito & A. Rubbia)
- 90% efficiency (80% for QE events)
- 0.5% of unoscillated events \rightarrow NC background

Detectors

LENA

(R. Mollënberg, J. Peltoniemi, M. Wurm)

- 50 kton fiducial mass
- Bin size: 0.05 0.25 GeV
- Emin: 500 MeV
- sigma(E) = 0.05*E
- 90% efficiency (70% 85% for QE events)
- 0.5% 5% unoscillated events as NC background

Detectors

- MEMPHYS (Fréjus) \rightarrow as in hep-ph/0603172
- MEMPHYS (rest of baselines) (0705.4396 [hep-ph])
 - 440 kton fiducial mass
 - Bin size: 125 MeV
 - Emin: 500 MeV
 - Migration matrices from L. Whitehead
 - 40% efficiency. Rejection efficiencies for NC background from L. Whitehead too

Pilar Coloma – SuperBeams in Europe

Sensitivity to theta13: WC

Pilar Coloma – SuperBeams in Europe