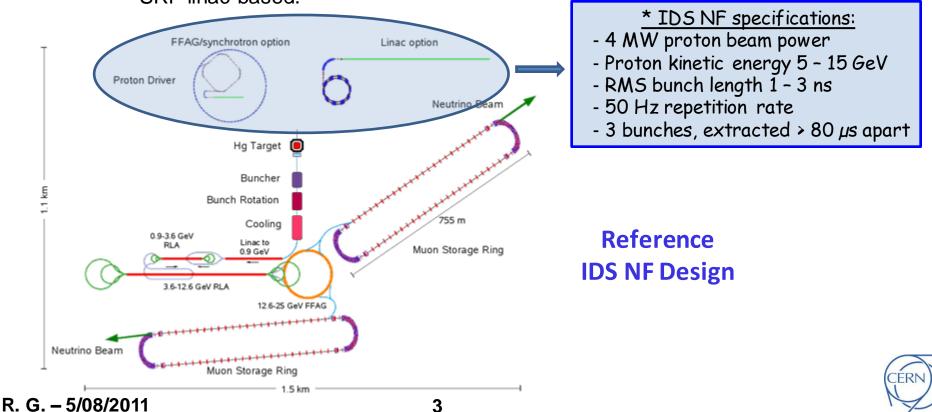
5/08/2011

Protons Drivers for v Beams and other High Intensity Applications

R. Garoby


[using material from:

- T. Koseki, K. Hasegawa (J-PARC)
- K. Gollwitzer, S. Nagaitsev (FNAL)
- J. Thomason (ISIS)
- M. Aiba, E. Benedetto, M. Benedikt, I. Efthymiopoulos, R. Steerenberg (CERN)]

Introduction

- This talk will focus on the favoured proton drivers options for the generation of neutrino beams at FNAL, RAL, CERN and J-PARC.
- HPPAs for other applications at other places are not treated (e.g.: neutron spallation sources, ADS for waste treatment and/or nuclear power generation, medical isotope production etc...).
- «Green field» solutions are not covered.

- A proton driver:
 - is necessary for (almost) all types of neutrino facilities,
 - can be used (and present ones have been built) for other purposes.
- A Neutrino Factory is the most demanding application*, although the proton driver remains a modest part of the whole facility.
- Two types of set-ups are favoured:
 - Ring-based
 - SRF linac-based.

Status and plans at:

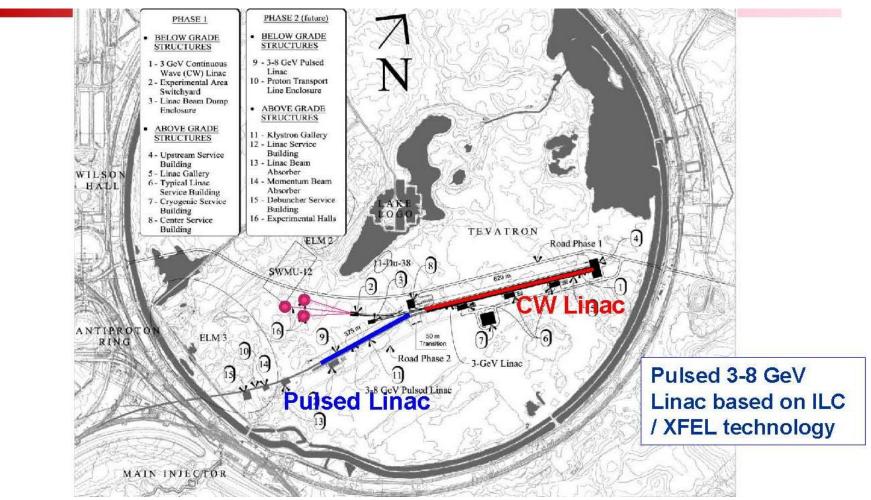
- FermiLab
 - RAL
 - CERN
 - J-PARC

FNAL plans (1/10) 🛟

Project X : Mission Goals

- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - <u>Operations simultaneous</u> with the neutrino program
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
 - Requires ~4 MW at ~5-15 GeV .
- Possible missions beyond HEP
 - Standard Model Tests with nuclei and energy applications

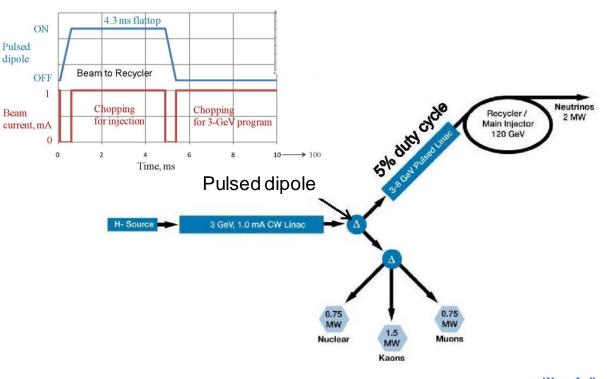
FNAL plans (2/10) 🛟


Project X : Reference Design Capabilities

- 3 GeV CW superconducting H- linac with 1 mA average beam current.
 - Flexible provision for variable beam structures to multiple users
 - CW at time scales >1 μsec, 15% DF at <1 μsec
 - Supports rare processes programs at 3 GeV
 - Provision for 1 GeV extraction for nuclear energy program
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
 - Supports the neutrino program
 - Establishes a path toward a muon based facility
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.
- Day one experiment to be incorporated utilizing the CW linac
- ⇒Utilization of a CW linac creates a facility that is unique in the world, with performance that cannot be matched in a synchrotron-based facility.

FNAL plans (3/10) 🛟

Project X : Provisional Siting


7

FNAL plans (4/10) 🛟

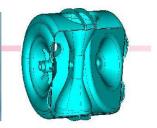
Project X : Reference Design Accelerators

- Warm cw front end 162.5 MHz, 5 mA (H- ion source, RFQ, MEBT, chopper)
- 3-GeV cw SCRF linac (325, 650 MHz), 1-mA ave. beam current
- Transverse beam splitter for 3-GeV experiments
- 3-8 GeV: pulsed linac (5% duty cycle), 1.3 GHz
- Recycler and MI upgrades
- Various beam transport lines

FNAL plans (5/10) 🛟

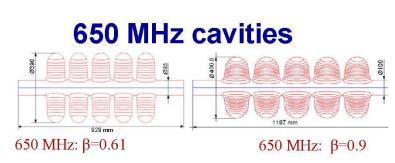
Project X : Superconducting RF H⁻ Linacs

β=0.11 β=0	.22	β =0.4	β =0 .61	β =0 .9	β=1.0
<		cw –			→ \leftarrow Pulsed →
325 I 2.5-16				MHz 3 GeV	1.3 GHz 3-8 GeV
Section	Freq	Energy (Me	V) Cav/mag	/CM	Туре
SSR0 (β _G =0.11)	325	2.5-10	18 /18	/1 ទ	SSR, solenoid
SSR1 (β _G =0.22)	325	10-42	20/20/	2 8	SSR, solenoid
SSR2 (β _G =0.4) 325		42-160	40/20/	′4 S	SSR, solenoid
LB 650 (β _G =0.61) 650		160-460 36 /24		/6 5-cel	l elliptical, doublet
HB 650 (β _G =0.9) 650		460-3000	160/40/	20 5-cel	l elliptical, doublet
ILC 1.3 (β _c =1.0) 1300		3000-8000) 224 /28	/28 9-ce	ell elliptical, quad


FNAL plans (6/10) 🛟

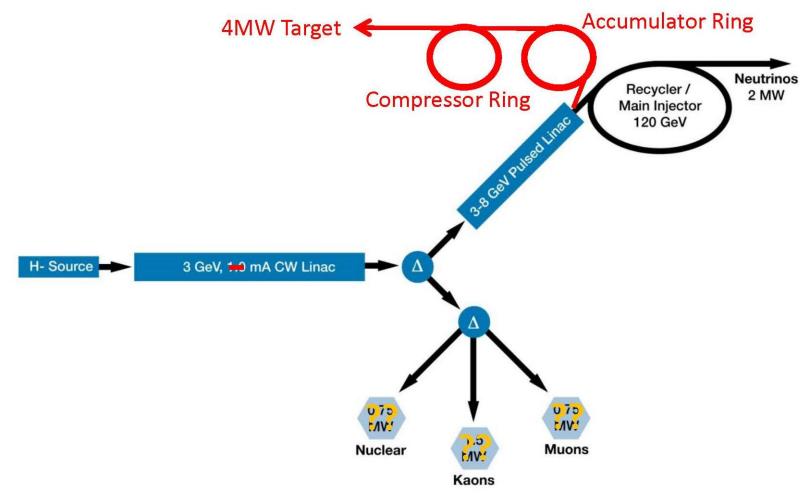
Project X : SRF cavities development

Spoke cavities


SSR1 – prototyping, testing

prototyping

Parameters of the single-spoke cavities

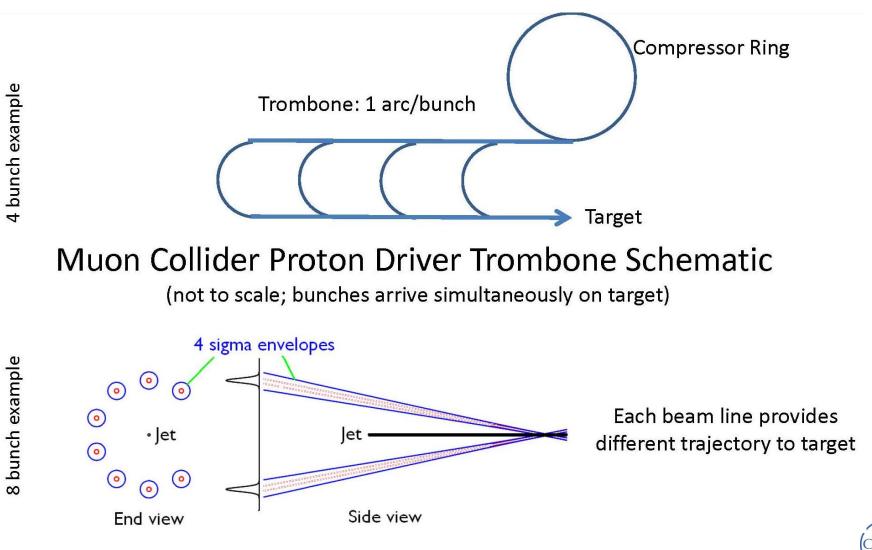

cavity type	β _G	Freq MHz	U _{acc, max} MeV	E _{max} MV/m	B _{max} mT	R/Q, Ω	G, Ω	*Q _{0,2K} ×10 ⁹	P _{max,2K} W
SSR0	β=0.114	325	0.6	32	39	108	50	6.5	0.5
SSR1	β=0.215	325	1.47	28	43	242	84	11.0	0.8
SSR2	β=0.42	325	3.34	32	60	292	109	13.0	2.9

Parameter		LE650	HE650
β_geom		0.61	0.9
R/Q	Ohm	378	638
G-factor, Ohm		191	255
Max. Gain/cavity (on crest)	MeV	11.7	19.3
Acc. Gradient	MV/m	16.6	18.7
Max surf. electric field	MV/m	37.5	37.3
Max surf. magnetic field,	mT	70	70
Q ₀ @ 2° K	×10 ¹⁰	1.5	2.0
P _{2K} max	[\V]	24	29

FNAL plans (7/10) 🛟 Project X upgrade (MC / NF): draft layout

FNAL plans (8/10) 🛟

Project X upgrade (MC / NF): actions' list


- Upgrade Project X
 - 4 MW at 8 GeV
 - Increase particles per linac bunch
 - Increase pulse linac duty factor

- Increase beam current during the
 - 8 GeV pulse to 5 mA (10 mA_{peak});
- Increase rep. rate to 15 Hz;
- Increase beam pulse length to 6.7 ms (10% duty cycle).
- Repackage linac beam for 12-15 Hz delivery
 - Accumulator Ring
 - Collect linac beam into bunches
 - Compressor Ring
 - Narrow bunches to <= 3 ns
 - Delivery as a single bunch (trombone system)
 - Multiple bunches arrive at target at same time

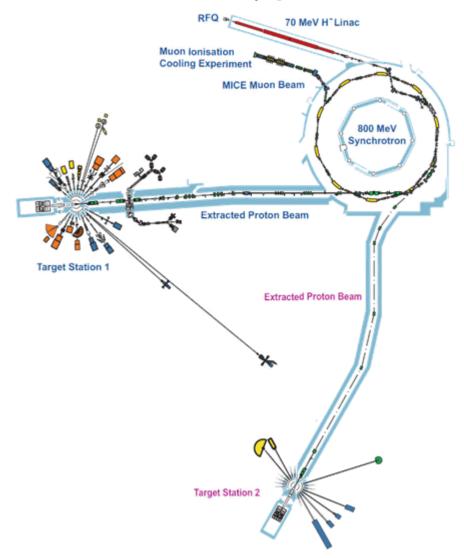
FNAL plans (9/10) 🛟

Project X upgrade: Combining bunches on target

FNAL plans (10/10) 🛟

Project X upgrade: Main subjects of concern (!)

- Accumulator Ring
 - Striping
 - Instabilities
- Compressor Ring
 - Bunch Rotation
 - Dipole aperture and large momentum spread
- Delivery
 - Trombone
 - Beam sizes and angles at target



Status and plans at:

- FermiLab
- *RAL*
 - CERN
 - J-PARC

ISIS plans (1/9) Science & Technology Facilities Council

Current (upgraded) ISIS (0.24 MW)

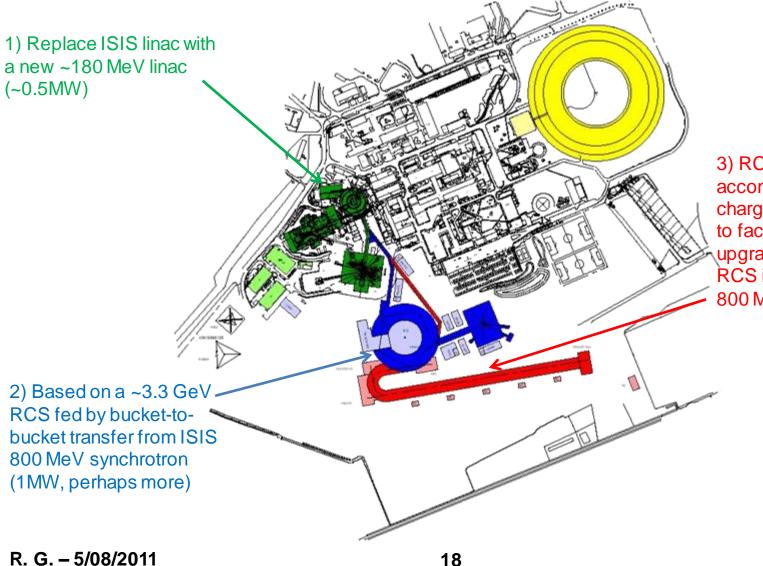
- Assumes an optimised 2RF system giving 300 µA in the synchrotron
- 4/5 pulse pairs to TS-1 (192 kW) and 1/5 pulse pairs to TS-2 (48 kW)
- Must keep beam to TS-2 for the foreseeable future

ISIS plans (2/9) Science & Technology Facilities Council

ISIS MW upgrade scenarios

Further developments of the ISIS accelerator and target stations are possible with each stage giving of order a factor 2 enhancement of the neutron source characteristics

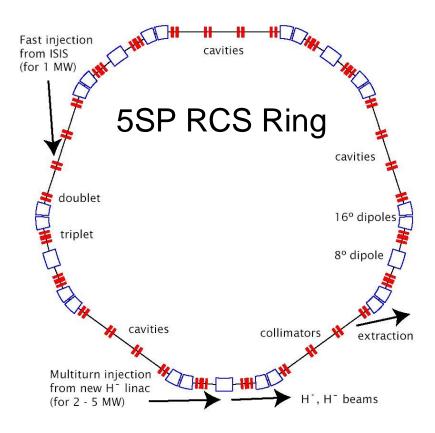
- 0) Linac and TS1 refurbishment
- 1) Linac upgrade leading to ~0.5 MW operations on TS1
- 2) ~3.3 GeV booster synchrotron: MW Target
- 3) 800 MeV direct injections to booster synchrotron: 2 5 MW Target


overlap with NF proton driver

4) 800 MeV direct injections to booster synchrotron
+ long pulse mode option

ISIS plans (3/9) Science & Technology Facilities Council

ISIS MW upgrade scenarios



3) RCS design also accommodates multi-turn charge exchange injection to facilitate a further upgrade path where the RCS is fed directly from an 800 MeV linac (2 – 5 MW)

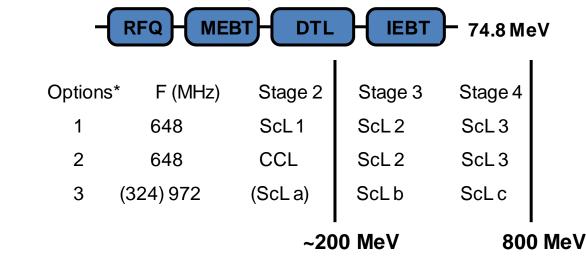
ISIS plans (4/9) Science & Technology Facilities Council

ISIS MW upgrade: «typical» 3.2 GeV RCS

Main RCS characteristics

Energy	0.8 - 3.2 GeV
Rep Rate	50 Hz
$C, R/R_0$	367.6 m, 9/4
Gamma-T	7.2
h	9
<i>f_{rf}</i> sweep	6.1-7.1 MHz
Peak V _{rf}	~ 750 kV
Peak K _{sc}	~ 0.1
ε_l per bunch	~ 1.5 eV s
<i>B</i> [<i>t</i>]	sinusoidal

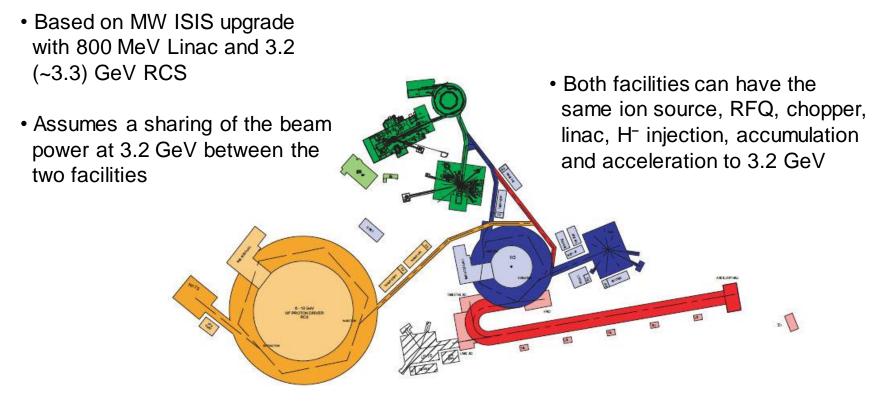
ISIS plans (5/9) Science & Technology Facilities Council



Main characteristics

Beam power for 2 MW, 30 Hz, 3.2 GeV RCS	0.5 MW
Beam pulse current before MEBT chopping	43.0 mA
Beam pulse current after MEBT chopping	30.0 mA
Number of injected turns for 370 m RCS	~500 turns
Beam pulse duration at the 30 Hz rep rate	~730.0 µs
Duty cycle for the extent of the beam pulse	~2.2 %
MEBT(out) normalised rms emittances	0.30, 0.42 (π) mm mr

ERI

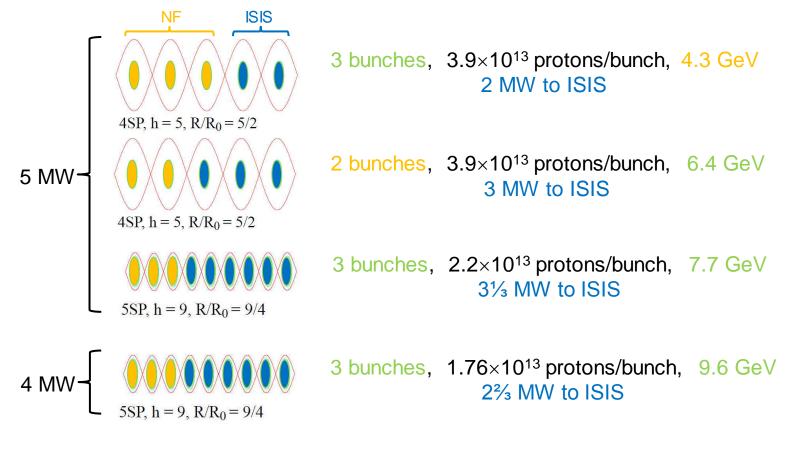

*74.8 MeV stage 1 (common to all options)

Draft architecture

ISIS plans (6/9) Science & Technology Facilities Council

ISIS Common Proton Driver for neutrons and NF

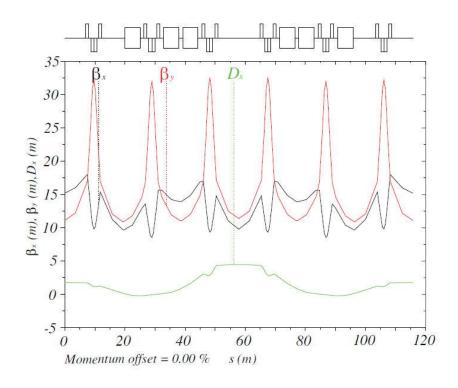
 Requires additional RCS machine in order to meet the power and energy needs of the Neutrino Factory



ISIS plans (7/9) Science & Technology Facilities Council

ISIS Common Proton Driver: RCS beam sharing

• Bunches will be transfered from the booster RCS at ~ 3.2 GeV, 50 Hz


Assume 4 – 5 MW from booster RCS, and 4MW required from NF proton driver :

ISIS plans (8/9) Science & Technology Facilities Council

ISIS Common Proton Driver: 2nd RCS design

Parameters of 3.2 - 9.6 GeV RCS

Number of superperiods	6
Circumference	694.352 m
Harmonic number	17
RF frequency	7.149–7.311 MHz
Betatron tunes (Q_H , Q_V)	(8.72, 7.82)
Gamma transition	13.37 (flexible)
Beam power at 9.6 GeV	4 MW for 3 bunches
Injection energy	3.2 GeV
Extraction energy	9.6 GeV
RF voltage per turn	≈ 3.7 MW
Repetition rate	50 Hz
Max B field in dipoles	1.2 T
Length of long drift	14 m

- Present-day, cost-effective RCS technology
- Only three quadrupole families
- Allows a flexible choice of gamma transition

ISIS plans (9/9) Science & Technology Facilities Council

ISIS MW Proton Driver: Necessary R § D

To realise ISIS MW upgrades, NF and generic high power proton driver development, common hardware R&D will be necessary in key areas:

- High power front end (FETS)
- RF Systems
- Stripping Foils
- Diagnostics
- Targets
- Kickers
- *etc.*
- In the neutron factory context SNS and J-PARC are currently dealing with many of these issues during facility commissioning and we have a watching brief for all of these
- Active programmes in some specific areas

Status and plans at:

- FermiLab
- RAL

• J-PARC

CERN plans (1/11)

Current PS-based Proton Driver

[from EDMS Document No.1108369 rev 1.1]

Draft layout

Short baseline experiment

Proton beam characteristics

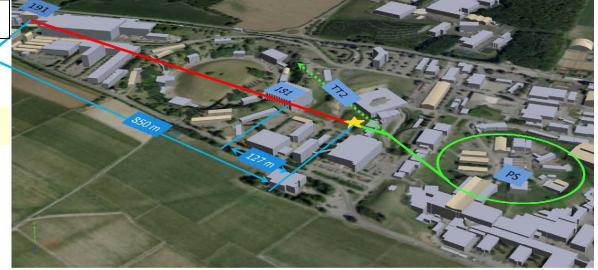


Figure 1.3: The foreseen neutrino beam path (red) on the Meyrin site. The green lines represent the primary protons beam in the PS, TT2, TT1 and TT7.

	Old neutrin	no facility	Nev	w neutrino fac	ility
	PS dedicated Feb-Mar 1983	PS parallel 1983 - 1984	PS dedicated	PS parasitic	PS ultimate ³
Proton Momentum	19.2 GeV/c	19.2 GeV/c	20 GeV/c	20 GeV/c	26 GeV/c
Protons/pulse	1.25x10 ¹³	1.2x10 ¹³	3x10 ¹³	2.6x10 ¹³	4x10 ¹³
Max. rep. rate	1.2 s	14.4 s	1.2 s	1.2 s	1.2
Beam energy	38 kJ	38 kJ	96 kJ	84 kJ	166 kJ
Average beam power	32 kW	2.5 kW	80 kW	70 kW	140 kW

CERN plans (2/11)

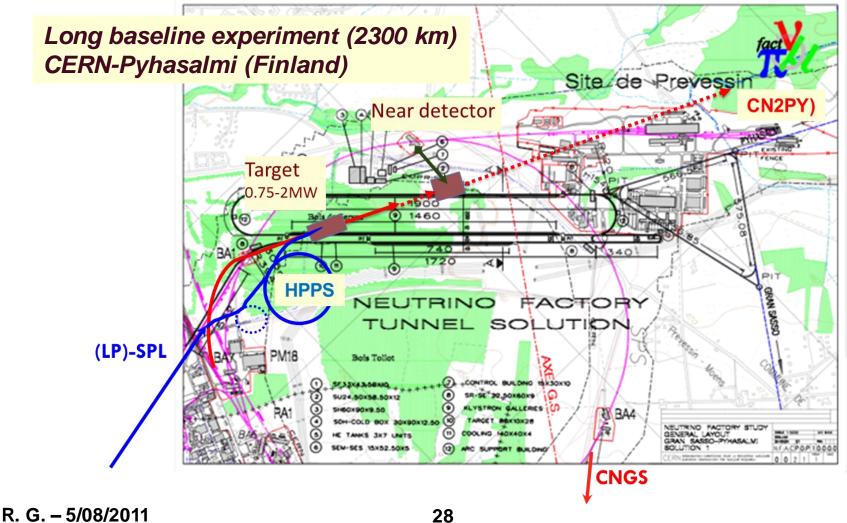
SPS-based Proton Driver

e.g. LAGUNA-LBNO DS (EU-FP7)

CERN-AB-2007-013 PAF

POT/year [10¹⁹] for 200 days of operation with 80% machine efficiency

	SPS cycle length	6 s		
	Injection Energy	14 GeV		
	Beam sharing Max SPS intensity @ 400GeV [x10 ¹³]	0.45	0.85	
Present injectors +	4.8	5	9.4	
machines' improvement	5.7	5.9	11.1	


Long baseline experiment (2300 km) CERN-Pyhasalmi (Finland) 1.3 x nominal CNGS performance

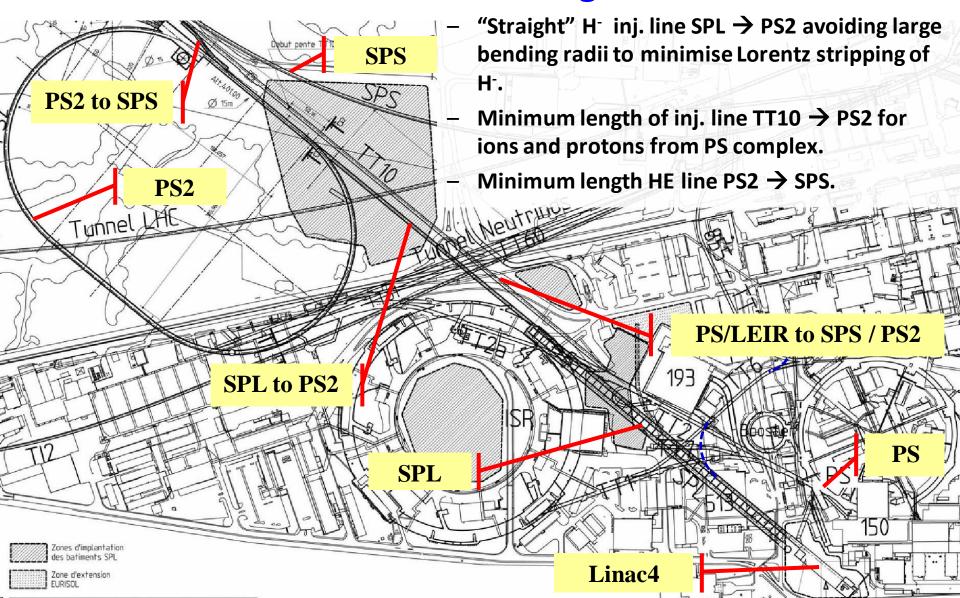
FR

CERN plans (3/11)

New High Power PS-based Proton Driver

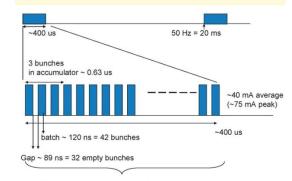
- New High Power PS (30-50 GeV, 2MW beam power) using the Low Power SPL (LP-SPL) as injector.
- Future Feasibility Study based on the work for LP-SPL and PS2 to be supported within the LAGUNA-LBNO DS (EU-FP7)

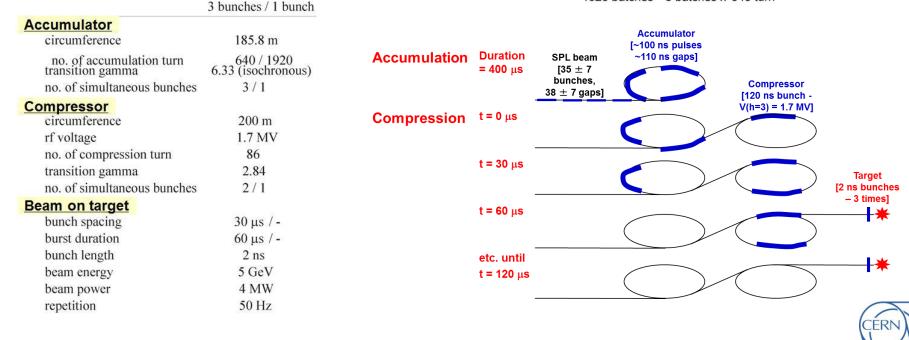
CERN plans (4/11)


Reminder: PS2 main parameters...

Parameter	unit	PS2	PS
Injection energy kinetic	GeV	4.0	1.4
Extraction energy kinetic	GeV	20 - 50	13 - 25
Circumference	m	1346	628
Max. bunch intensity LHC (25ns)	ppb	4.0 x 10 ¹¹	1.7 x 10 ¹¹
Max. pulse intensity LHC (25ns)	ррр	6.7 x 10 ¹³	1.2 x 10 ¹³
Max. pulse intensity FT	ррр	1.0 x 10 ¹⁴	3.3 x 10 ¹³
Linear ramp rate	T/s	1.5	2.2
Repetition time (50 GeV)	S	~ 2.5	1.2/2.4
Max. stored energy	kJ	800	70
Max. effective beam power	kW	320	60

CERN plans (5/11)


Reminder: PS2 integration...


CERN plans (6/11) SPL-based NF proton driver: Principle

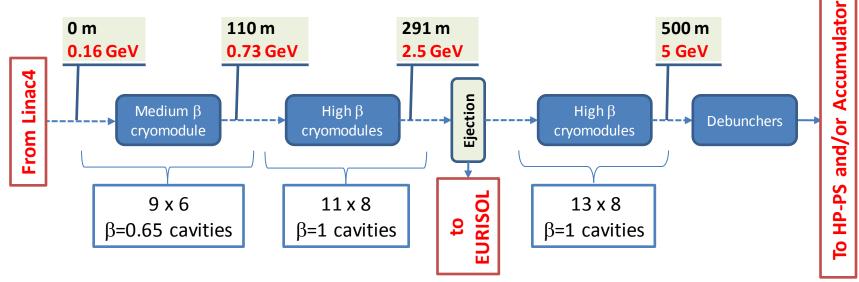
- Accumulation of beam from the High Power SPL in a fixed energy Accumulator (5 GeV, 4MW beam power).
- Bunch compression («rotation») in a separate Compressor ring

3 bunches

1920 batches =3 batches x 640 turn

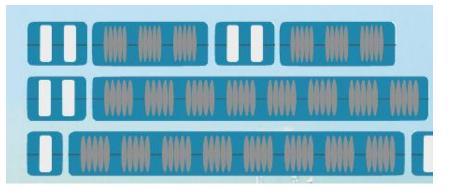
R. G. - 5/08/2011

CERN plans (7/11)


HP-SPL: main characteristics

	species	Η- ←		[Required for low loss in accum	ulator	
Output Energy5Bunch Frequency352.2Repetition Rate50		352.2	GeV ← [Required for muon production		
Hig	h speed chopper e & fall times)	50 < 2	Hz ns		Required for flexibility and lov in accumulator	v loss	
			Option 1	l	Option 2		
	Energy (GeV)	V) 2.			2.5 and 5		
	Beam power (MW)		2.25 MW (2.5 <u>or</u>	GeV)	5 MW (2.5 GeV) and		
			4.5 MW (5 G	ieV)	4 MW (5 GeV)		
	Protons/pulse (x 10 ¹⁴)		1.1		2 (2.5 GeV) + 1 (5 GeV)		
	Av. Pulse current (mA)		20		40		
	Pulse duration (m	is)	0.9		1(2.5 GeV) + 0.4 (5 GeV)		

 $2 \times \text{beam current} \Rightarrow 2 \times \text{nb. of klystrons etc.}$


ER

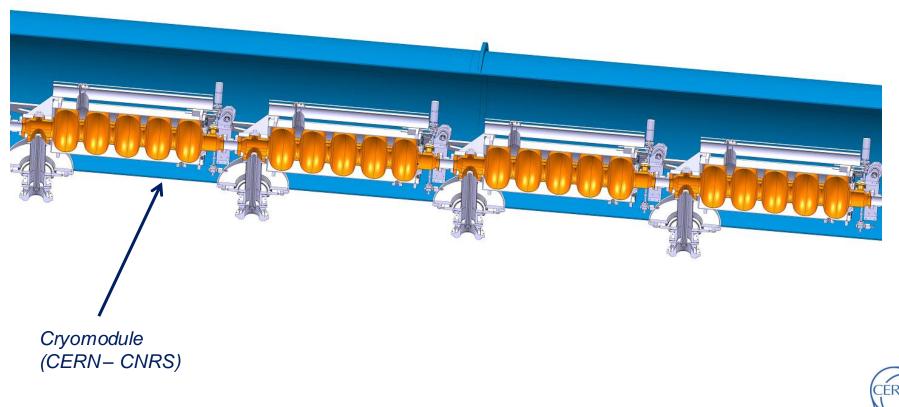
CERN plans (8/11) HP-SPL: block diagram

Segmented cryogenics / separate cryo-line / room temperature quadrupoles:

- Medium β (0.65) 3 cavities / cryomodule
- High β (1) 8 cavities / cryomodule

Low energy

Intermediate energy


High energy

R. G. - 5/08/2011

CERN plans (9/11) HP-SPL: R § D objective

Design, construction and test of a string of 4 β =1 cavities equipped with main couplers § tuners inside a "short" prototype cryo-module before the end of 2014 tested in 2014.

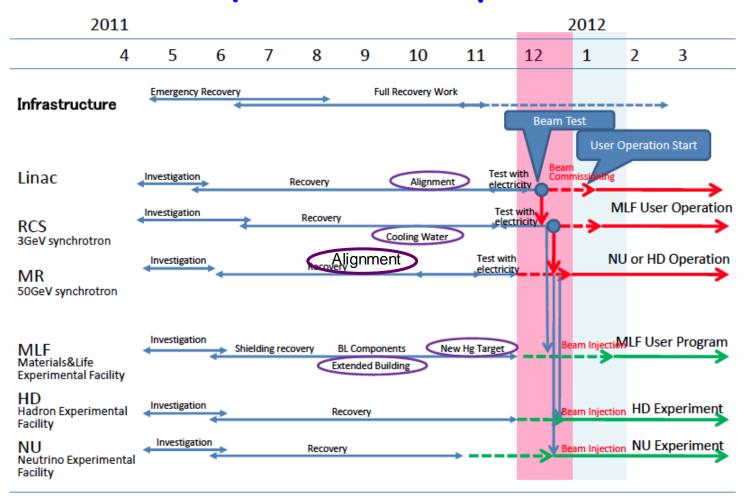
CERN plans (10/11) HP-SPL: Cavity § cryomodule design SPL β = 1 cavity + helium tank + tuner + main coupler Bulk niobium cavities (CERN) HOM coupler Helium tank (CERN– Uni Rostock) (CERN-CEA) Tuner (CEA) Main coupler (CERN)

CERN plans (11/11)

Summary of supporting activities

• Current PS-based Proton Driver:

- Needs extensive investigation of impact on infrastructure (~on-going)
- Requires more resources if current PS beam performance is insufficient (closely linked to the LHC Injectors Upgrade Project)
- SPS-based Proton Driver:
 - Study of beam ejection/Xfer line/target/decay tunnel foreseen within LAGUNA-LBNO DS
 - LAGUNA-LBNO DS expected to support investigation of SPS potential for higher intensity/flux (closely linked to the LHC Injectors Upgrade Project)
- New High Power PS (with LP-SPL as injector):
 - Conceptual Design Study foreseen within LAGUNA-LBNO DS
- SPL-based Proton Drivers (LP-SPL as well as HP-SPL):
 - Approved R § D on main SRF components, in collaboration with ESS and a number of EU laboratories/institutions, with some support from Brussels
 - Study of ring(s) foreseen within LAGUNA-LBNO DS


Status and plans at:

- FermiLab
- RAL
- CERN

J-PARC plans (1/4)

Earthquake recovery schedule

- Start of beam commissioning: December 2011.
- User program: 50 days of beam time until the end of March 2012.

TERN

J-PARC plans (2/4)

Power Upgrade for MR fast extracted beam

Achieved before the earthquake:

145 kW beam delivery to the T2K experiment

-> Recovery of the 145 kW beam is the first target of the FX operation

For higher beam power :

1. Increase beam loss capacity in ring collimator and reduction of activation

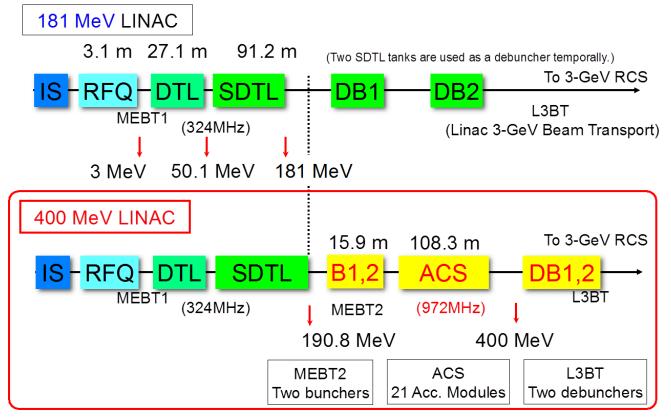
- Additional shielding in ring collimators

2. Increase injected number of particles per pulse

- Second harmonic cavity for manipulation of longitudinal bunch form
 - to reduce the effect of space charge force
- Lower emittance beam of the RCS by adopting 400 MeV injection

3. Increase repetition rate

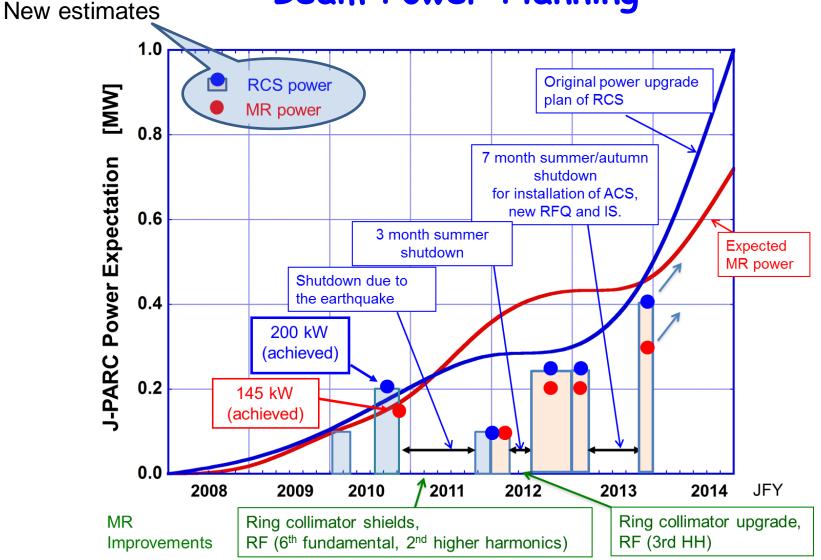
Improvement/replacement of main magnet power supplies and rf system
R&Ds of high rep. time magnet power supply and high field gradient cavity are well in progress .


J-PARC plans (3/4)

Linac Energy Upgrade

The full energy (400 MeV) linac is necessary for the J-PARC facility to reach nominal performance (Beam power: 1MW@RCS, 0.75MW@MR)

Funding for construction of 181 to 400MeV part of the linac started with supplementary budget of JFY2008.


Installation is scheduled during the Summer 2013.

FR

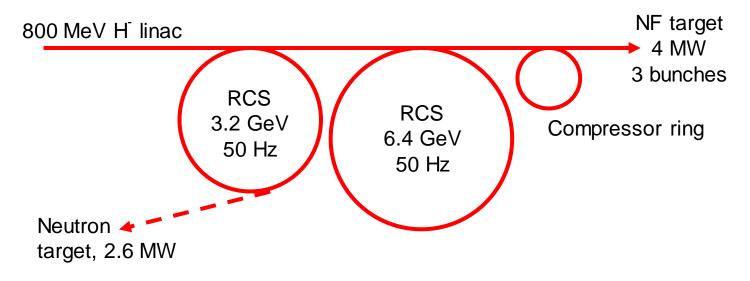
J-PARC plans (4/4)

Beam Power Planning

FR

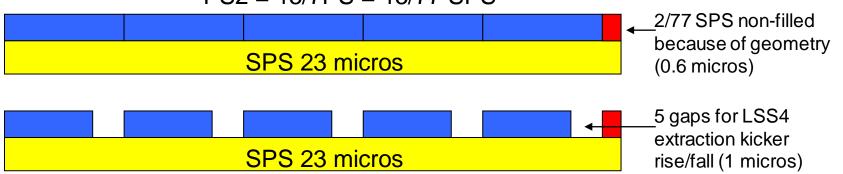
Summary

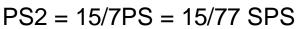
- Many challenges remain for multi-GeV MW-class proton drivers, and even more when adding the requirements of NF and MC.
- For the time-being, neutrino facilities only «piggy-back» on existing or planned projects.
- Projects are at very different degrees of advancement:
 - J-PARC is recovering and getting back with an ambitious power upgrade plan,
 - Project X is at an advanced stage of proposal with extensive R § D,
 - Other projects are at the R§D stage/remote from approval (e.g. LAGUNA, ISIS MW upgrade),
 - 1 MW for conventional neutrino beam should be operational before 2020.
- Collaboration is worth enhancing, including apparented HPPA projects:
 - Many technologies are common (H⁻ ion source, RFQ, High Power RF, SRF, targets,...),
 - Resources are scarce!


THANK YOU FOR YOUR ATTENTION!

ISIS plans

ISIS Common Proton Driver: Alternative option


- Fast phase rotation in the dedicated compressor ring (most economic from the RF point of view, but another ring is needed)
- Bunches will be extracted one by one from the RCS
- Compressor ring works above transition, but the rotation is very fast
- \bullet The bunches in the RCS will wait uncompressed for 200 μs
- We do not have a design for the compressor ring at the moment, but CERN design can be adopted



CERN plans

Reminder: PS2 for high beam intensities in SPS...

- PS2 provides up to twice line density of PS high-intensity beam
- Twice circumference gives up to~4 times more intensity in total
 - ~1.0E14 per PS2 cycle (~1E14 with a longer kicker gap)
- Five-turn extraction will fill SPS with single shot instead of two from PS
 - Twice more intensity in SPS via twice higher line density.
 - No injection flat bottom in the SPS (two shot filling from PS presently)
- Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)
 - ~6E11 protons per PS2 40 MHz bucket → 1.2E11 in every fifths SPS 200 MHz bucket (extraction kicker gap by leaving buckets unfilled at PS2 injection)

R. G. - 5/08/2011