

CLFV and Related Programs

PSI/MEG: BR($\mu \rightarrow e \gamma$) < 10⁻¹³

 $\mu \rightarrow eee$ in future

J-PARC: BR($\mu^- N \rightarrow e^- N$) < 10^{-14} , 10^{-16}

J-PARC: $K_{e2}/K_{\mu 2}$

J-PARC: μ g-2 < 0.1 ppm

J-PARC: µ EDM

PSI: μ EDM

FNAL: μ g-2 < 0.1 ppm

BNL: μ g-2 < 0.5 ppm >3- σ off from SM

Outline

- Introduction
- MEG
- COMET, Mu2e and other Experiments
- Summary

v oscillation and cLFV

- cLFV searches play a key role to understand the origin of neutrino mass
 - Scale of neutrino mass generation

- Scale of EW Symmetry breaking (TeV)
- Verification of new physics existence

MEG Recent Result

Donato Nicolò's talk Today afternoon WG4

MEG Result before this Summer

- 2008 data
 - <2.8×10⁻¹¹ @ 90% C.L.
 - NP B834(2010) 1-12
- 2009 data
 - <1.5×10⁻¹¹ @ 90%C.L.
 - Preliminary, shown at ICHEP 2010

MEG Detector

- Beam Transport System PSI PiE5 beam line 3×10^7 /sec
- Liquid Xenon Gamma-ray Detector

Positron Spectrometer

 Im

Analysis Update

- After ICHEP 2010 presentation
- More work on the major systematics
 - Alignments (DC-B-target-LXe)
 - B field reconstruction
 refinement using measured Bz
 - Detailed implementation of positron observable correlations
- Data analysis cross check
 - Two likelihood analysis implementation

Likelihood

20

0.1

5

10

15

Number of signals

20

•8% for null signal

15

Number of signals

10

0.1

2009 & 2010 Combined Result

Data	$\mathbf{B}_{\mathbf{fit}}$	LL	UL
2009	3.2×10^{-12}	1.7×10^{-13}	9.6×10^{-12}
2010	-9.9×10^{-13}	1	1.7×10^{-12}
2009+2010	-1.5×10^{-13}	-	2.4×10^{-12}

- Systematic error (total 2.2%) included
 - Data fitted 100 times, with changing PDF using its uncertainty
 - RMS of the unconstrained best fit and the UL is calculated
- More data in 2011 and 2012
- Detector upgrade under discussion

Future Experiments

What is mu-e Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^{-} + (A,Z) \rightarrow_{V\mu} + (A,Z-1)$$

Neutrino-less muon nuclear capture (=µ-e conversion)

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

lepton flavours changes by one unit

- $E_{\mu e} \sim m_{\mu} B_{\mu}$
 - B_{μ} : binding energy of the 1s muonic atom

$$B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow \nu^{N'})}$$

Theoretical Models

- SUSY-GUT, SUSY-seesaw (Gauge Mediated process)
 - BR = 10^{-14} = BR($\mu \rightarrow e \gamma$) × O(α)
 - τ→lγ

- SUSY-seesaw (Higgs Mediated process)
 - BR = $10^{-12} \sim 10^{-15}$
 - $\tau \rightarrow l\eta$

- Doubly Charged Higgs Boson (LRS etc.)
 - Logarithmic enhancement in a loop diagram for μ -N \rightarrow e-N, not for μ -e γ
 - M. Raidal and A. Santamaria, PLB 421 (1998) 250
- and many others

$$\begin{split} L_{\text{CLFV}} &= \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \\ &\quad + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{u}_L \gamma^{\mu} u_L + \bar{d}_L \gamma^{\mu} d_L \right) \end{split}$$

mu-e & g-2

• muon g-2

- $\mu \perp e \gamma$ (MEG)
 - 2009-2010BR < 2.4×10^{-12} (90%C.L.)

G. Ishidori et al., PRD 75 (2007) 115019

B physics constraint

Recent Upper Limits

SINDRUM-II: BR[μ^- + Au \perp e $^-$ + Au] < 7 × 10⁻¹³ SINDRUM-II: BR[μ^- + Ti \perp e $^-$ + Ti] < 4.3 × 10⁻¹²

TRIUMF: BR[μ^{-} + Ti \perp e⁻ + Ti] < 4.6 × 10⁻¹²

Principle of Measurement

- Process: $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$
 - A single mono-energetic electron
 - $E_{\mu e} \sim m_{\mu} B_{\mu} : 105 \text{ MeV}$
 - Delayed: ~1μS
- No accidental backgrounds
- Physics backgrounds
 - Muon Decay in Orbit (DIO)
 - $E_e > 102.5 \text{ MeV (BR:}10^{-14})$
 - $E_e > 103.5 \text{ MeV (BR:}10^{-16})$
 - Beam Pion Capture
 - $\pi_{+}(A,Z) \to (A,Z-1)^* \to \gamma_{+}(A,Z-1)$ $\gamma \to e^+ e^-$

 R_{ext} = $\frac{\text{number of proton between pulses}}{\text{number of proton in a pulse}}$

SINDRUM II

 $BR[\mu^- + Au \perp e^- + Au]$ $< 7 \times 10^{-13}$

mu-e conversion search

• Mu2e at FNAL

• COMET at J-PARC

Mu2e Experiment at FNAL

- Target S.E.S. 2×10⁻¹⁷
- uses the antiproton accumulator/ debuncher rings to manipulate proton beam bunches
- No interference with NOvA experiment
 - Mu2e uses beam NOvA can't
- pion production target in a solenoid magnet
- S-shape muon transport to eliminate BG and sign-select
- Tracker and calorimeter to measure electrons

Mu2e R&D Status

- Solenoid system design
- Advanced modeling of the primary beam
- civil and building design as well
- Detector R&D
 - Straw tracker in vacuum

- DOE CD-1 this autumn
 - CD-2/3a about a year later

COMET Experiment at J-PARC

- Target S.E.S. 2.6×10⁻¹⁷
- Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulse-pulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons

COMET R&D Status

proton beam

- Proton beam study (Extinction Measurement)
- Measurement at MR abort line (Fast Extraction) and Secondary beam line (Slow Extraction)
 - Both provided consistent result
 - Extinction: $(5.4 \pm 0.6) \times 10^{-7}$
- Further improvement expected (O (10⁻⁶)) by double injection kicking
- External extinction device improves even more (O(10⁻³))
 - US-Japan cooperative research program

COMET R&D Status

pion capture solenoid

- Intensive studies of SC wire and solenoid magnet
- Irradiation test of SC wire at Kyoto Univ. research reactor
 - Deterioration after irradiation and recovery after thermal cycle confirmed

M. Yoshida WG3&4 Thursday S. Cook WG3&4 Thursday

Comparison between Mu2e and COMET

	Mu2e	COMET
Proton Beam	8GeV, 20kW bunch-bunch spacing 1.69 µsec rebunching Extinction: < 10 ⁻¹⁰	8GeV, 50kW bunch-bunch spacing 1.18-1.76 µsec empty buckets Extinction: < 10 ⁻⁹
Muon Transport	S-shape Solenoid	C-shape solenoid
Detector	Straight Solenoid with gradient field Tracker and Calorimeter	C-shape Sole of the capture section of capture ones with a gradient field apple under a label of the capture of
Sensitivity	SES: 2×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷	SES: 2.6×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷

Other cLFV Experiments

- DeeMe
 - Another mu-e conversion search proposal at J-PARC
- μ⊥ eee search plan at PSI
- cLFV search using τ lepton at Belle/Belle II

DeeMe at J-PARC

- mu-e conversion search at J-PARC with a S.E.S. of 10⁻¹⁴
- Primary proton beam from RCS
 - 3GeV, 1MW
- Pion production target as a muon stopping target
- Beam line as a spectrometer
 - Kicker magnets to remove prompt background
- Multi-purpose beam line for DeeMe, HFS, g-2/EDM is under construction

μL eee search

- Plan to search for
 µ⊥ eee using PSI muon
 beam
 - SINDRUM limit in 1988 1.0×10⁻¹²
- Thin pixel silicon tracker and scintillating fiber timing counter
- LoI planned in 2011

N. Berger WG4 Tuesday

cLFV search using t lepton

Summary

- cLFV search activities in the world
- MEG improved the limit of $\mu \rightarrow e \gamma$
 - 2.4×10^{-12} at 90% C.L.
 - Further improvement expected
- COMET, DeeMe and Mu2e
 - intensive R&D for realization of experiments
- τ LFV at Belle, μ→eee at PSI

NuFact'11 1st - 6th August 2011 Geneva, Switzerland