• The only muon cooling scheme that appears practical within the muon lifetime (2.2 µs)

- Energy loss
- Acceleration
The only muon cooling scheme that appears practical within the muon lifetime (2.2\(\mu\)s) – works "at the speed of the muon".

- Energy loss
- Acceleration
• The only muon cooling scheme that appears practical within the muon lifetime (2.2\(\mu\)s) – works "at the speed of the muon".

• Cooling mainly transverse in a linear channel
• Longitudinal cooling requires momentum-dependent path-length through the energy absorbers
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\langle \frac{dE}{ds} \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \approx \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\langle dE/ds \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \sim \frac{0.875\text{MeV}}{\langle dE/ds \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing

- tight packing to minimize decay losses
- low muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \approx \frac{\langle \frac{dE}{ds} \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \approx \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \simeq \frac{\langle dE/ds \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \simeq \frac{0.875\text{MeV}}{\langle dE/ds \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\langle \frac{dE}{ds} \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \approx \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: $29\text{MeV/m} \times 8.9\text{m}$; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\langle \frac{dE}{ds} \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \simeq \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_{\perp}}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_{\perp} \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\left\langle \frac{dE}{ds} \right\rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \approx \frac{0.875\text{MeV}}{\left\langle \frac{dE}{ds} \right\rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal channel

$$\frac{d\varepsilon}{ds} \sim \frac{\langle dE \rangle}{\beta^2 E} (\varepsilon - \varepsilon_0), \quad \varepsilon_0 \approx \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_\perp}{\beta}$$

ε_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- Tight packing to minimize decay losses
- Low muon momentum
- Emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Ionization Cooling

Normalized transverse emittance ϵ of muon beam in solenoidal channel

$$\frac{d\epsilon}{ds} \sim \frac{\langle \frac{dE}{ds} \rangle}{\beta^2 E} \left(\epsilon - \epsilon_0 \right), \quad \epsilon_0 \approx \frac{0.875\text{MeV}}{\langle \frac{dE}{ds} \rangle X_0} \frac{\beta_\perp}{\beta}$$

ϵ_0: equilibrium emittance (multiple scattering \sim cooling)

Efficient cooling requires:

- Energy absorbers with large ΔE per radiation length (LH2: 29MeV/m x 8.9m; LiH: 151MeV)
- Strong focusing (large B-field), $\beta_\perp \sim p/B$
- High-gradient rf cavities to replace longitudinal momentum and for phase focusing performance degraded in B-field (critical R&D)
- tight packing to minimize decay losses
- low muon momentum
- emittance exchange for 6D cooling (or twisted field – Guggenheim, HCC, snake)
Of MICE & MuCool

MICE
Experiment at RAL to demonstrate and measure cooling

MuCool
R&D program at Fermilab to develop ionization cooling components
Of MICE & MuCool

MICE

Experiment at RAL to demonstrate and measure cooling aims of the International Muon Ionization Cooling Experiment are:

- to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory

- to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling

MuCool

R&D program at Fermilab to develop ionization cooling components
Of MICE & MuCool

MICE
Experiment at RAL to demonstrate and measure cooling

MuCool
R&D program at Fermilab to develop ionization cooling components

mission:

- design, prototype and test components for ionization cooling
 - energy absorbers (LH2, solid LiH)
 - RF cavities
 - magnets
 - diagnostics
- carry out associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)
Serious degradation of RF cavity performance in strong external magnetic fields. Currently main focus of MuCool.

- Magnetic field effect first seen at Fermilab’s Lab-G with a 6-cell 805-MHz cavity

- Studied in more detail at MTA with 805-MHz pillbox cavity

- Various models proposed
Potential Solutions

1. Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
2. Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
3. Shielding: iron (Rogers), bucking coils (Alekou, WG3)
Potential Solutions

1. Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)

2. Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)

3. Shielding: iron (Rogers), bucking coils (Alekou, WG3)
Potential Solutions

1. Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)

2. Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)

3. Shielding: iron (Rogers), bucking coils (Alekou, WG3)
Potential Solutions

4 Magnetic insulation: modified cavity/coil designs to keep $B \perp E$ on cavity surfaces (Palmer)

Loss of x 2 gradient advantage in pillbox geometry

5 High-pressure gas: suppress breakdown by moderating electrons (Muons Inc.) – beam test in progress (Yonehara)
Potential Solutions

4. Magnetic insulation: modified cavity/coil designs to keep $B \perp E$ on cavity surfaces (Palmer)

Loss of $x 2$ gradient advantage in pillbox geometry

5. High-pressure gas: suppress breakdown by moderating electrons (Muons Inc.) – beam test in progress (Yonehara)
Dedicated facility at the end of the Linac built to address MuCool needs

- RF power (13 MW at 805 MHz, 4.5 MW at 201 MHz)
- Superconducting magnet (5 T solenoid)
- Large coupling coil under construction
- 805 and 201 MHz cavities
- Radiation detectors
- Cryogenic plant
- 400 MeV p beamline
Summary of MuCool experimental program

- trying to demonstrate a working solution to RF cavity operation in high external magnetic field for muon cooling
- major MAP milestone
- big impact on cooling channel design and future system tests
- multipronged approach to cover maximum ground with available resources

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Outstanding issues</th>
<th>Proposed resolution</th>
<th>Experimental tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pillbox</td>
<td>Breakdown and damage</td>
<td>Better materials</td>
<td>Mo, W, Be buttons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Be-walled 805-MHz cavity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface processing</td>
<td>Electropolished buttons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>201-MHz pillbox in B-field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coatings</td>
<td>ALD-coated buttons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALD-coated cavity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnetic insulation</td>
<td>E⊥B box cavity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E‖B box cavity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modified cavity-coil geometry</td>
</tr>
<tr>
<td>rectangular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>open-iris</td>
<td>B-field/pressure effects</td>
<td>Materials tests</td>
<td>805-MHz 4-season cavity</td>
</tr>
<tr>
<td>Pressurized</td>
<td>Beam-induced ionization</td>
<td>Measure ionization lifetime</td>
<td>805-MHz cavity in beam</td>
</tr>
<tr>
<td></td>
<td>Frequency dependence</td>
<td>Test at different frequency</td>
<td>Pressurized 201-MHz cavity</td>
</tr>
</tbody>
</table>
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
- test buttons with different materials/coatings

- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)

Safe Operating Gradient vs Magnetic Field

![Graph showing gradient vs magnetic field](image)

Yağmur Torun
MICE & MuCool – NuFact11 – 8/4/11
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows

- test buttons with different materials/coatings

- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows

- test buttons with different materials/coatings

- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 - flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings

Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 - flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings

- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings
 Cu still weak link – Be, Mo and W look promising

- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings
 Cu still weak link – Be, Mo and W look promising

Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings
 Cu still weak link – Be, Mo and W look promising

Back after rebuild at JLab, tested again

Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 - flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings
 - Cu still weak link – Be, Mo and W look promising

Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
805 MHz pillbox cavity used to:
- quantify magnetic field dependence of gradient
- establish feasibility of thin windows
 flat Cu windows unstable at high power, curved Cu and Be windows work well
- test buttons with different materials/coatings
 Cu still weak link – Be, Mo and W look promising

Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- To be tested with Be buttons soon
- Reprocessing afterwards (Bowring)
Box Cavity

- Rectangular geometry chosen for test cavity to allow fast fabrication and simplify analysis
- Support system designed to rotate cavity pivoting around magnet center by up to 12°
- Rectangular coupling aperture with rounded edges and a coupling cell built to match the power coupler to waveguide
- Three CF flange tubes for rf pickups and optical diagnostics
- $f_0 = 805.3$ MHz, $Q_0 = 27.9 \times 10^3$, coupling factor 0.97
- YT et al., IPAC10
Operated in the MTA magnet Mar-Sep 2010
Commissioned to 50 MV/m at B=0
Took data at 0, ±1, 3, 4° wrt B axis (3T)
Large effect seen at 3-4° (stable gradient down to about 25 MV/m)
Some degradation even at ≤ 1° (33 MV/m)
Visual inspection of interior, no obvious damage
RF, optical and X-ray signals during sparks saved for analysis
Magnetic insulation seems to work but not well enough to make up for lost shunt impedance
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field

- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field

- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field

- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
 - reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- reduced performance
- radiation output measured (MICE detector backgrounds)

- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
- reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior
201 MHz MICE prototype cavity

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field
 - reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field
 - configuration closer to MICE
- No surface damage seen on cavity interior
Evidence for some sparking in the coupler

SEM images of 201 MHz coupler.

Unipolar arc?
modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- looking into Be walls
- G. Kazakevich et al., PAC11
modular pillbox with replacable end walls

designed for both vacuum and high-pressure

tested under vacuum to 16 MV/m in the MTA
coupler failure (now replaced)
to be operated again at higher power and in magnet
looking into Be walls
G. Kazakevich et al.. PAC11
modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- looking into Be walls
- G. Kazakevich et al.. PAC11
modular pillbox with replacable end walls

designed for both vacuum and high-pressure

tested under vacuum to 16 MV/m in the MTA

coupler failure (now replaced)

to be operated again at higher power and in magnet

looking into Be walls

G. Kazakevich et al.. PAC11
- modular pillbox with replaceable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet

- looking into Be walls
- G. Kazakevich et al. PAC11
4-Season cavity (Muons Inc., LANL)

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- looking into Be walls

G. Kazakevich et al. PAC11
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 16 MV/m in the MTA
- coupler failure (now replaced)
- to be operated again at higher power and in magnet
- looking into Be walls
- G. Kazakevich et al.. PAC11
HPRF cavity beam test (Yonehara, WG3)

- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF cavity beam test (Yonehara, WG3)

- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF Program

HPRF cavity beam test (Yonehara, WG3)
- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF Program

HPRF cavity beam test (Yonehara, WG3)
- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF cavity beam test (Yonehara, WG3)

- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF Program

HPRF cavity beam test (Yonehara, WG3)

- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
HPRF cavity beam test (Yonehara, WG3)
- First beam experiment at MTA
- Started running on Jul 12
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced ionization (M. Chung et al., IPAC10)
 - Intense muon bunch expected to create lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)
500 psi N2
500, 800 and 950 psi H2
8µs beam, 2 intensities
dopant test (N2, SF6) next week
analysis in progress
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
- Phosphor screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- $O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28

- Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
- Phosphor screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- $O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28

Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min

Phosphor screen upstream of collimator to measure beam spot

Beamline and instrumentation upgraded

$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28

Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min

Phosphor screen upstream of collimator to measure beam spot

Beamline and instrumentation upgraded

$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28
Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min
Phosphor screen upstream of collimator to measure beam spot
Beamline and instrumentation upgraded
$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28

Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min

Phosphor screen upstream of collimator to measure beam spot

Beamline and instrumentation upgraded

$O(10^{11})$ protons through collimators
First beam pulse to "emittance absorber" (beam stop 2) Feb 28

Intensity about 1.8×10^{12} protons/pulse at 1 pulse/min

Phosphor screen upstream of collimator to measure beam spot

Beamline and instrumentation upgraded

$O(10^{11})$ protons through collimators
Students at the MTA (past year)

- Anastasia Belozertseva (U. Chicago) – magnetic field mapping
- Last Feremenga (U. Chicago) – magnetic field mapping
- Ben Freemire (IIT) – HPRF beam test (thesis), everything else
- Giulia Collura (Torino) – HPRF beam test
- Timofey Zolkin (U. Chicago) – dark current instrumentation
- Peter Lane (IIT) – acoustic sensors for detecting cavity sparks
- Raul Campos (NC State) – beamline magnet support
- Ivan Orlov (Moscow State) – HPRF beam test simulation
- Tom Mclaughlin (Valparaiso) – magnetic field mapping
MTA Schedule and Outlook

- **Experimental program**
 - HPRF cavity in beam – first test to be finished next week
 - 805 MHz pillbox cavity with Be buttons – Aug 2011
 - 201 MHz cavity coupler repair and operation in large B
 - further HPRF beam tests as needed – by Mar 2012
 - rectangular box cavity with $\mathbf{B} \parallel \mathbf{E}$
 - more $\mathbf{B} \perp \mathbf{E}$ rectangular box cavity tests?
 - 4-season cavity – Aug 2011
 - ALD cavity – under discussion

- **Infrastructure**
 - beam commissioning complete
 - cryo upgrade in progress
 - magnet field mapping soon
 - RF circulator/switch to be installed in Linac
 - coupling coil and single-cavity module in Hall

- Expect to demonstrate a working solution to RF cavity operation in high magnetic field within the next 2 years
Ionization cooling has many challenges in practice
Need demonstration with real hardware to establish
 components can be engineered
 performance can be accurately predicted
MICE concept

- Beamline to deliver 140-240 MeV/c muons
- Track one μ at a time through one cell of cooling lattice (FSII)
- Momentum measurement before and after the cooling hardware
- Particle ID to remove decays and beam contamination
- Form muon "bunch" in software

Requires

- High purity muon beam, low-mass trackers + PID detectors
MICE accelerator hardware

- 3 absorber + focus coil (AFC) modules expected delivery this year
- 2 rf cavity + coupling coil (RFCC) modules cavities to be completed this year, CC under construction (Zisman, WG3)
- 2 spectrometer modules for trackers and matching (under repair)
- G. Hanson (WG3)
2 SciFi trackers ready
3 TOF walls commissioned in Step I, upgraded afterward
2 aerogel CKOVs commissioned
KL commissioned, EMR partially installed
Phase space from TOF (Rayner)
Phase space from TOF (Rayner)
MICE SCHEDULE -- update July 2011

STEP I
completed -> Aug2010

STEP IV
Q3 2012

STEP V
Q2 2014 *)

STEP VI

*) target date, necessary to run step V before long ISIS shut-down Aug.2014-Feb.2015
Next steps

- Step IV: emittance measurement with trackers
 - Step V: cooling measurement with RF
 - Step VI: full period of cooling lattice
Next steps

- Step IV: emittance measurement with trackers
- Step V: cooling measurement with RF
- Step VI: full period of cooling lattice
Next steps

- Step IV: emittance measurement with trackers
- Step V: cooling measurement with RF
- Step VI: full period of cooling lattice
Step I complete
Beamline magnets, target and instrumentation operational
Magnets and absorbers under construction
Tracking detectors ready
PID detectors mostly commissioned (EMR in progress)
Online and offline software developed
Schedule under control
5 Ph. D.’s so far, 6 more expected this year
Demonstrate ionization cooling within 3 years
MICE and MuCool making steady progress
On track for establishing practical ionization cooling technology in the next few years