

Ion production for the betabeams

Thierry.Stora@cern.ch ISOLDE Target and Ion source team

Beta beams : 1st concept

ISOLDE was already there

10 years ago

Baseline scenario

be exploited to its fullest. The estimated intensities from an EURISOL-type target station of the required ions, ⁶He and ¹⁸Ne, would be sufficient for a beta-beam facility.

Beta Beam baseline (FP6 EURISOL-DS)

2-6 years ago

EN

EPJA 47, 24 (2011)

2011

baseline

C. Hansen

25 minutes ago !

Ш

Ш

Argonne Concepts for ISOL Production Targets

Production of ⁶He

⁹Be(n,α)⁶He

2-Step Fast Neutron Fission Uranium Carbide Fission Target

Tunasten Neutron

Original idea, J. Nolen (1995/2002) 2.9 10¹⁹ √e (6 10¹³ ⁶He/s out of target for 2 yrs)

2011

ENDF 9Be(n,a)6He cross section EXFOR Request: 31003/1, 2009-Sep-30 05:15:56

EURISOL RTD report (2003)

ENDF/EXFOR cross sections

How does 10¹³ isotope/s compare to

present figures in ISOL facilities ?

Beams of **10¹² ions**/s are documented at TRIUMF and CERN-ISOLDE

p* Current

(LAU)

70

70

This corresponds to $\sim 10^{13}$ /s (neutral) isotopes from target

Halflife

2.6 v

14,95 h

22.5 s

Yield at

ISOLDE

2.0E+12

1.4E+10

2.0E+12

4.9E+08

6.0E+09

3.4E+06

7.0E+06

7.0E+03

1.5E+03

6.1E+00

4.0E+00

Yield

(/s)

1.20e+12

6.50e+10

TRIUMF Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules TRIUMF HOME **ISAC Yield Measurements** WELCOME AND NEWS FROM THE DIRECTOR Return to periodic table ABOUT TRIUMF Date Element Mass Molecule A/q NEXT 5-YEAR PLAN Numbe CONTACT/FIND US 22 2005-10-01 22.00 Na CONFERENCES & VISITORS 2005-10-01 Na 24g 24.00 USERS AND EMPLOYEES 2005-10-01 Na 21 21.00 2008-11-27 Na 24g 24. Users/Visitors Office →

ΕN

15% post acceleration eff. in 2005

Post acceleration of multicharged

isotopes

CTRIUMF

ΕN

acceleration of radioactive charge bred ions

2008 November 11

measure γ radiation of ⁸⁰Rb¹⁴⁺ after charge breeding \Rightarrow 1.1 10⁵ ions per sec

radioactive beam is accompanied by ~100 nA $^{40}\mbox{Ar}^{7+}$

inject beam into RFQ, accelerate to 150 A keV, drift through DTL, analyze energy with magnet

transmission for ⁴⁰Ar⁷⁺ 33%

measure γ radiation of $^{80}Rb^{14+}$ after acceleration $\Rightarrow 3.5 \ 10^4$ ions per sec (32%)

γ spectrum after acceleration

eration

10

2011

Commissioning of the ECRIS charge state breeder at TRIUMF

F. Almes, ECRIS 2010

August 25, 2010

Optimization of ⁶He production

- MCNPx, N. Thiollieres et al., CEA (EURISOL-TN-03)
- 2 10^{13 6}He/s 100kW, 1 GeV proton beam
- 10¹⁴ ⁶He/s 200kW, 2 GeV proton beam

Heat load on H₂O-cooled W conv.

35 kW deposited

ΕN

S. Marzari

2011

We might want to further evolve this concept: H2O-cooled W slices like ISIS target

Experiment on 6He production/release

Aug 2011

Stora

EN

1.4 GeV from PSB 6He release curve p-n W converter 1.E+06 1+ FEBIAD ion source, cold line oetas/mscoll/smeas (s-1) 1.E+06 for Noble Gases 8.E+05 6.E+05 Release efficiency 4.E+05 >85% released t_{1/2} 2.E+05 0.E+00 0.01 0.1 10 tdelay+0.5tcoll (s)

ΕN

operation temperature outgasing materials compatibility ageing, etc...

2011

CERN, GANIL, Soreq/Weizman, Bratislava

100-200kW target operation range

TRIUMF (Canada) operates ISOL Radioisotope beams at 0.5GeV, 40kW, cw protons with 1 target / month

ΕN

ISIS (RAL, UK) operates W/Ta proton to neutron converter at 0.8GeV,160kW, 50Hz (10ms) for 300 days

ISIS target station (140kW, 0.8GeV p)

EN

This needs adaptation for target station for ISOL production

Aug 2011

Stora

Also a 100kW direct target station layout during EURISOL-DS

Production of ¹⁸Ne ions for v_e

 Direct spallation of 1 GeV protons onto thick oxide targets AI (p,X) ¹⁸Ne

Silberberg-Tsao, Thin target approx.

Nominal parameters:

3 1010 part/s (Fluka)

Production of $10^{19} v_e$ Out of the target 1 $10^{13} {}^{18}$ Ne/s for 8 years

M. Loiselet, S. Mitrofanov Validated at 9kW at LLN. Needs ~ 100mA, ³He 21MeV, Ø60cm target

A new proposal in 2009

Inspired from 18F production for PET imaging:

¹⁹F(p,2n)¹⁸Ne: threshold 16MeV, peak at 1.6mbarn @ 30MeV (M. Loiselet, S. Mitrofanov)

 $^{24}\text{Mg}(p,\alpha p2n)^{18}\text{Ne}$: threshold 39 MeV, cross-sections ?

²⁷Al(p,X)¹⁸Ne : ~ 4 mbarn @ 50-70 MeV (Lanulas-Solar, 1988&1992)

2011

T. Stora

Production of ¹⁸Ne ions for v_e

Selection of a suitable eutectic comprising Na and F nuclei :

Salt	Composition [mol %]	Melting point [C]	Density [g/cm3] (700 C)	Viscosity [cP] (700 C)	Vapor pressure [mm Hg] (900 C)	Yield proton 6mA 160MeV	rieia helium3 6mA 160
Naf-BeF2	57 – 43	340	2.01	7	1.4	8.8E+012	7.1E+012
NaF-NaBF4	8 – 92	384	1.75	0.9	9500	8.4E+012	6.9E+012
NaF-ZrF4	60 – 40	500	3.14	5.1	5	1.0E+013	8.2E+012

NaF : melting point at ca 1000°C

ΕN

D. F. Williams, Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer loop, ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, TN (2006)

Intensity/energy p-beam for 10¹³ ¹⁸Ne/s

EN

P. Valko, T. Stora

2011

Aud

We need a molten salt MW-range ISOL target; Proton Linac as driver

Scaling of the diffusion chamber

E. Noah @ IPUL Lab, Molten Pb/Bi EURISOL DS

M. Fujioka , Y. Arai, Diffusion of Radioisotopes from Solids in the form of Foils, Fibers and Particles, Nucl. Instr. and Meth. 186 (1981) 409

D = 2-4 10⁻⁵ cm²/s for Kr and Xe D estimated at 4-8 10⁻⁵ cm²/s for Ne RJ Kedl, A Houtzeel, ORNL-4069: 1967-06

After 4 $\tau_{diffusion}$, ie 0.5s

Diffusion	Hole	Released	Released
coefficient	radius	fraction	fraction
[mm2.s-1]	[mm]	Cylinder	Sphere
5.0E-004	0.25	0.25	0.35
1.0E-003	0.25	0.35	0.47
2.5E-003	0.25	0.5	0.63
2.8E-003	0.25	0.53	0.66
5.0E-003	0.25	0.64	0.76
5.0E-004	0.1	0.54	0.67
1.0E-003	0.1	0.68	0.79
2.5E-003	0.1	0.83	0.9
2.8E-003	0.1	0.85	<u> </u>
5.0E-003	0.1	0.91	0.95
			,

¹⁸Ne production target 10¹³/s

Upcoming activities

Selected items will be prototyped and tested:

-Diffusion chamber (collab. D. Heuer, LPSC-CNRS Grenoble)

-Static molten salt unit at CERN-ISOLDE (transfer to ion source, production and release of Ne, stainless steel):

INTC, Sept 2011

	Experiments at CERN
Title	Production and Release of Gas and Volatile Elements from Sodium-based Targets
Author(s)	Stora, T 🖶 ; Plewinski, F 🖶 ; Noah messomo, E A 🖶 ; Wildner, E 🖶 ; Catherall, R 🖶
Experiment	IS509
Institutes	See all IS509 institutes
Approved	01 December 2010
Status	Preparation
Collaboration	ISOLDE
Accelerator	ISOLDE
Abstract	Several large scale facilities being studied for Europe use sodium or a sodium-based alloy either

-Physical characterization of molten salt (Ne diffusion, viscosity, surface tension, etc)

Progresses on 60GHz ECR

LPSC

60 GHz ECR source status

Sixty GHz ECR Ion Source using Megawatt Magnets

<u>T. Lamy</u> M. Marie-Jeanne, P. Sortais, T. Thuillier Laboratoire de Physique Subatomique et de Cosmologie, Grenoble – France

I.V. Izotov, A. V. Sidorov, V. A. Skalyga, V. G. Zorin Институт Прикладной Физики - RAS, Nizhny Novgorod – Russia

F. Debray, C. Trophime, N. Vidal Laboratoire National des Champs Magnétiques Intenses, Grenoble – France

T. Lamy, LPSC, WG3

28 GHz (1T) ECR zone closed at about 12000 A The 60 GHz closed ECR zone should be obtained at 26000 A

Iso-B for resonance zones

Plasma experiments are already 'magnetically' possible at 28 GHz using two LNCMI current supplies

Phase 1 of this project is a success

And on Preglow mode

ΕN

Nizhny Novgorod, Russia

Institute of Applied Physics

Russian Academy of Sciences

V. Zorin, V.Skalyga, I. Izotov, S. Golubev, S. Razin, A. Sidorov, A. Vodopyanov

Aug 2011

Simulation of micropulses

 x 75 GHz experiments will be done in 2010 2011

ECRIS 2010 JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Influence of initial plasma density and mean electron energy on the Preglow effect

РАН

I. IZOTOV¹, A. SIDOROV¹, V. SKALYGA¹, V. ZORIN¹, O. TARVAINEN², V. TOIVANEN², H. KOIVISTO² ¹ Institute of Applied Physics Russian Academy of Sciences (IAP RAS), Nizhny Novgorod, Russia; mailto: <u>izotov@appl.sci-nnov.ru</u> ² Department of Physics, UNIVERSITY OF JYVASKYLA, Finland

Proton drivers at CERN?

Linac 4 upgrade: 160MeV, ca 1.6 mA on average.

PSB upgrade : 2 GeV proton, 4-6 μA on average for (HIE)-ISOLDE.

RCS : 2 GeV proton, 10(20?) μ A on average for (HIE)-ISOLDE

Conclusion - Baseline ion production

EN

The status on the **100kW-1MW** high power targets for isotope production for the beta-beams have been reviewed.

- The proposed technologies do not **break records** for present high power target design/operation.
- First successes on 60GHz pulsed ECR prototype operation and modelling
- Still some prototyping remains to provide figures, no show stopper so far.

50 µs ago ! (and was still true 1-3 ns ago !!)

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-Tof- Neutrons Time Of Flight