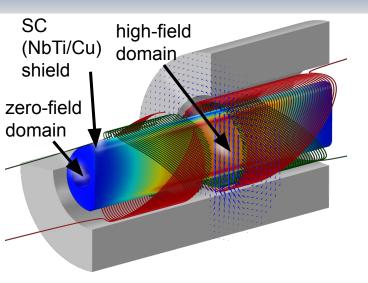
Accelerator-development related activities

D. Barna (barna.daniel@wigner.hu, http://wigner.hu/~barna), K. Brunner, D. Veres, M. Szakály, M. Koszta, T. Vaszary, Zs. Simon Wigner Research Centre for Physics (+worldwide)

V. Mertinger, V. Kárpáti, M. Sepsi, G. Szabó, M. Szűcs, E. Nagy University of Miskolc, Institute of Physical Metallurgy, Metalforming and Nanotechnology



Accelerator-related activities in Hungary - overview

- 2014-2016 (D. Barna, CERN TE-ABT)
 - CERN ELENA (Extra Low ENergy Antiproton ring) electrostatic transfer lines: simulation, design, construction, commissioning
 - FCC-hh beam extraction concepts → Superconducting Shield (SuShi) septum idea
- 2016-2022
- Wigner RCP signs FCC MoU, "SuShi septum for the FCC" project: CERN(⑤ 🍽)-Wigner (🂢 💡 ⑥)
 - University of Miskolc joins the project & FCC (⑤ 🍑 🏏 💡): NbTi/Cu multilayer superconducting sheet R&D
 - University of Miskolc joins hi-lumi LHC (Nb rolling tests for crab cavities)
- 🕒 🌣 I.FAST (Innovation Fostering in Accelerator Science and Technology) EU(💰), Wigner RCP (💰 🗶)
 - HITRIPlus (Heavy Ion Therapy Research and Infrastructure) EU(§), Wigner RCP (§ X)

A single initial flagship project branched into several new activities, pulling in new partners and resources

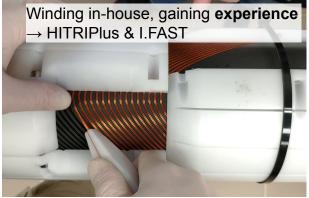
SuShi septum for the FCC (CERN-Wigner RCP)

- Extraction of 8 GJ proton beam from FCC
- Concept: canted cosine theta (CCT)-like winding
 + SC shield
- Flagship project, starting a brand new activity at Wigner RCP (and in Hungary)

SuShi septum for the FCC (CERN-Wigner RCP)

Shield-

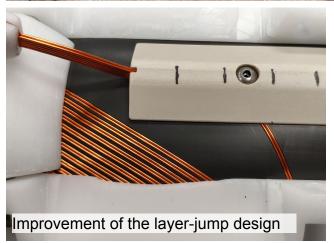
Current lead guide (0021)


Elastic shield support (0026-0029)

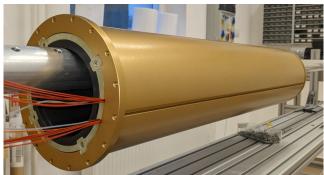
Support tube (0007)

Lamination (0018)

SuShi septum for the FCC (Wigner RCP)



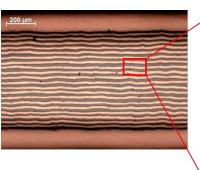
CERN: continuous support (know-how, drawings, winding training, etc) Glyn Kirby, b.927 team


In return: feedback on design improvements, R&D, etc

Winding completed, waiting for wax impregnation

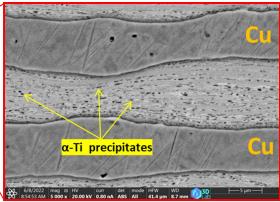
Testing: 2022 FREIA/Uppsala, 2023 CERN (with shield)

Superconducting NbTi/Cu multilayer R&D (Univ. Miskolc)


SuShi needs NbTi/Nb/Cu multilayer sheet (Nippon Ltd) - very expensive, and discontinued

Akira Yamamoto → workshop with Nippon engineers to keep and improve know-how → called Uni. Miskolc (HU)

- Development of cost-effective manufacturing technology (rolling, forging, SPD metal forming)
- **Theory** (modelling, thermodynamic modelling, fine structure analysis)
- Excellent research infrastructure: 3D LAB @ Univ. Miskolc
- Secured **resources**: Thematic Excellence Program, Cooper. Doctoral Program



laminated structure

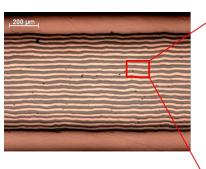
Superconducting NbTi/Cu multilayer R&D (Univ. Miskolc)

SuShi needs NbTi/Nb/Cu multilayer sheet (Nippon Ltd) - very expensive, and discontinued

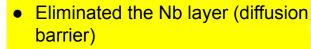
Akira Yamamoto → workshop with Nippon engineers to keep and

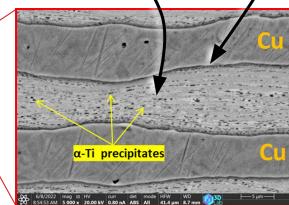
improve know-how → called Uni. Miskolc (HU)

 Development of cost-effective manufacturing technology (rolling, forging, SPD metal forming)

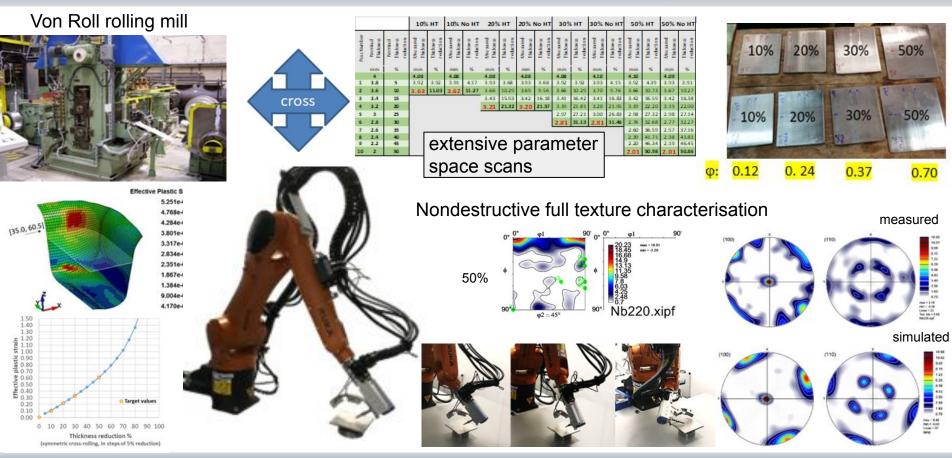

Theory (modelling, thermodynamic modelling, fine structure analysis

• Excellent research infrastructure: 3D LAB @ Univ. Miskolc


• Secured resources: Thematic Excellence Program, Cooper. Doctoral Program



laminated structure



cheaper & better

 α-Ti precipitates similar to Nippon (on-going J_c tests)

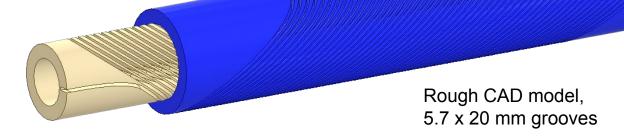
Hi-lumi LHC / Nb rolling tests for crab cavities (Univ. Miskolc)

I.FAST project - Wigner RCP

WP8 - Innovative Superconducting Magnets

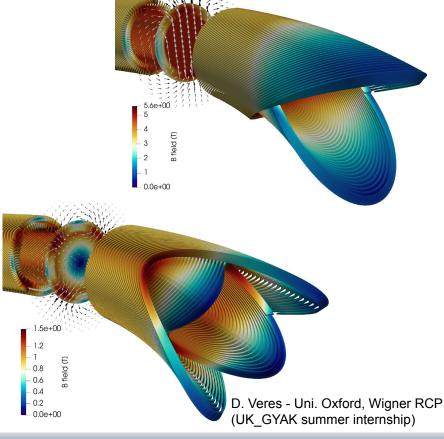
Combined-function straight NbTi CCT magnet prototype

Straight HTS CCT magnet prototype


Tasks

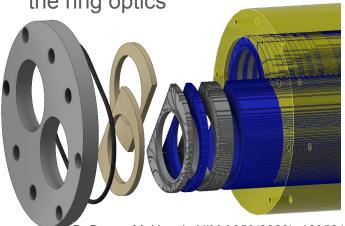
Design, winding tests (+development of wax impregnation method...)

After the withdrawal of 2 industrial partners


→ construction of Straight combined-function

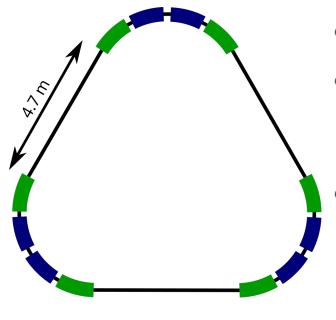
NbTi CCT magnet (?)

HITRIPlus project - Wigner RCP


- Compact (8x8 m) SC synchrotron for hadron therapy
- WP8 magnet design
 - Curved SC CCT magnet (ring, gantry)
- Our tasks
 - Winding geometry optimization
 (IEEE TAS 32 (2022), 4900914, doi: 10.1109/TASC.2022.3162389)
 - Magnetic design
 - Engineering design (task leader)
 - Do winding testing
 - Contribute to construction
 - Development of wax impregnation method

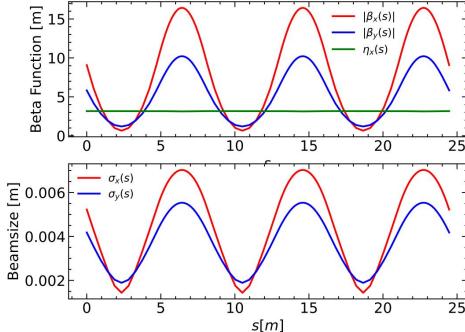
Complementing HITRIPlus: opposite-field septum magnet

- Opposite-fields in the two apertures
 - No magnetic force on the wall
 - Can be made very thin, even with high fields
- Extraction system can be very compact (key goal for HITRIPlus)

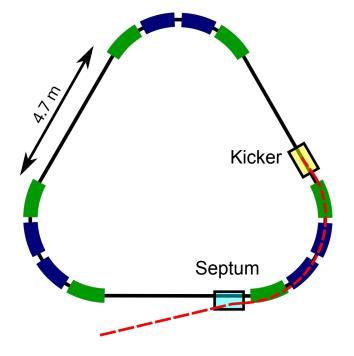

 Non-zero field in both apertures → part of the ring optics

- 1.5e+00-
- Accelerator-grade field quality
- All-PEEK construction (no eddy currents, high ramp rate). Novel material in SC magnets.
- Proposal submitted to I.FAST Innovation Fund (Wigner RCP, University of Miskolc, Camilleon Ltd)

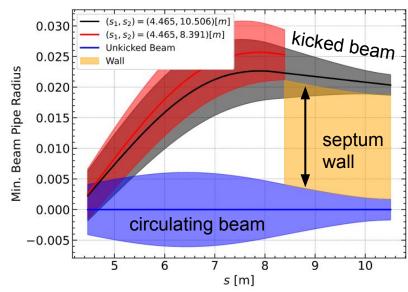
D. Barna, M. Novak, NIM A959(2020), 163521;
M. Szakály - Uni. Oxford, Wigner RCP (UK_GYAK internship report, unpublished)


HITRIPlus - optics design

- Work out the optics for the triangular ring
- Weak focusing may give simplest configuration and


smallest beamsize

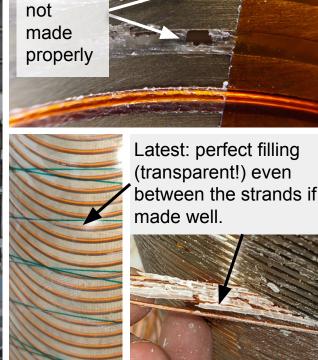
On-going work...



M. Koszta - Imp. College London, Wigner RCP (UK_GYAK internship), E. Benedetto (Tera Found.)

HITRIPlus - optimize the extraction optics

- Straight sections far too short
 - Best kicker+septum arrangement: before/after bending section
 - → Kicked beam must traverse dipoles aperture?
 - Proposed opposite-field septum may be the key (minimal wall thickness)


M. Koszta - Imp. College London, Wigner RCP (UK_GYAK internship), E. Benedetto (Tera Found.)

Wax impregnation R&D

- Experiments @ PSI: wax-impregnated short Nb₃Sn sample - no training! (M. Daly, et al., Supercond. Sci. Tech. 35, 055014)
- SuShi prototype right before impregnation → volunteer to be one of the first wax'ed CCT magnet
 - R&D for void-free impregnation of complex geometry
- Several other projects can benefit
 - HITRIPlus ring magnets
 - I.FAST HTS CCT magnet (HTS is prone to delamination if epoxy-impregnated)
 - Opposite-field septum magnet
 - CERN/Spain "Fusillo" project

Resources - budget

Budget [kCHF]	R&D infrastructure	SuShi septum	NbTi/Cu multilayer R&D	HITRIPlus	Opposite-field septum	I.FAST	Wax impregnation testing
FCC Study [250] - Wigner							
HITRIPlus [18] - Wigner							
I.FAST [25] - Wigner							
OTKA [39] - Wigner							
UK_GYAK - Wigner (5 x 3 summer-student-months)							
Specific infrastructure grants [~20] - Wigner							
Thematic Excellence Program [240] - Miskolc							
Cooperative Doctoral Program [75] - Miskolc-Wigner							
Matching funds + misc. [~(Wigner) (manpower, consumables, infra, etc)							

Organization of activities into projects is sometimes artificial (everything is cross-linked)

Diverse financing scheme

Financing issues, strategy

- Accelerator R&D is costly, complex and expensive
 - The field must find societal application → justification of costs
 - ..and a market → to lower prices, become affordable/sustainable
- Accelerator (technology) R&D financing is difficult
 - not fundamental research
 - has a difficult market few accelerators only
- Grants often encourage (require)
 - Collaboration with industry de

Delivery of a marketable product + business plan/revenue by the end of the project

- Accelerator components are often 1-off, no big market
- Key benefits: technology, know-how accumulating at industrial partner, collaboration and involvement (→ business capital)

Resources - manpower, organization

Wigner Research Centre for Physics (5 years history) - **application**, integration in accelerators, magnetic design, simulation, **concepts**, assembly and construction, etc

Manpower	Infrastructure
 2 researchers (PhD) 1 technician 1 BSc regular undergraduate summer students from the UK several high-school students with their teacher (student demo projects) 	 CCT magnet winding machine Vacuum impregnation system COMSOL simulation framework In-house mechanical workshop
University of Miskolc - material and manufacturing te	chnology
Manpower	Infrastructure

Strategy

Have both long-term and short-term visions:

FCC – an excellent environment (secured ♠, organized networking □, support novel ideas ♥)
 Societal applications: HITRIPlus (hadron therapy) & I.FAST

overlapping activities, common technologies, perfect synergy

- Target very specific, well-defined goals with short-term deadlines.
- Join activities with/of leading players of the field, contribute missing resources (manpower, concepts) – "market(academia)-driven" approach
 - Ensures proper integration into, and application in justified projects
 - \circ Basis for a mutually beneficial collaboration: \longrightarrow HU, $\cancel{\cancel{K}}$ \bigcirc \bigcirc partner
- Concentrate on small and innovative projects
 - Significant added value
 - Requiring moderate infrastructure (w.r.t. standard "big science")
 - o Involve industrial partners (S)MEs with sufficient resources but no big inertia
- Concentrate on students (starting from high school!)
- Collaborate, diversify know-how and capabilities

Acknowledgments

- FCC Study Group
- Ministry of Innovation / Hungarian National Research, Development and Innovation Office
 - OTKA K124945
 - 2019-2.1.6-NEMZ KI-2019-00008
 - o TKP-17-1/PALY-2020
 - Co-operative Doctoral Program of the Ministry of Innovation and Technology financed from the National Research, Development and Innovation Fund
 - UK_GYAK (summer students from abroad)
- European Union's Horizon 2020 research and innovation programme
 - 101008548 (HITRIPlus)
 - 101004730 (I.FAST)