
John Marshall for the Pandora Team
22nd June 2022

Pandora SDK Details

Working with Pandora J. S. Marshall

Introduction

2

• The idea behind the Pandora Software Development Kit (SDK) is that the operations
required to solve almost all pattern-recognition problems are well-defined:

• Sort input points in time or space into higher-level structures e.g. Clusters,

• Refine Clusters by merging and/or splitting operations,

• Sort Clusters into groups and/or hierarchies, e.g. representing Particles.

• What differs between problems is the precise logic used to govern these operations.

HCAL

TPCECAL

Nucl. Instrum. Meth. A611, 25 (2009) Eur. Phys. J. C 75, 439 (2015)
Nucl. Instrum. Meth. A700, 153 (2013) Eur. Phys. J. C 78, 82 (2018)

w

x

10 cm

https://www.sciencedirect.com/science/article/abs/pii/S0168900209017264
https://link.springer.com/article/10.1140/epjc/s10052-015-3659-3
https://www.sciencedirect.com/science/article/abs/pii/S0168900212011734?via=ihub
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6

Working with Pandora J. S. Marshall

Design Principles

3

• Created the Pandora SDK to develop and run pattern-recognition algorithms, with
Application Programming Interfaces (APIs) designed to ensure that:

Input/Output Logic

Operations
1. It is easy for users to provide the

building-blocks defining a pattern-
recognition problem.

2. Logic required to solve pattern-
recognition problems is cleanly
implemented in algorithms.

3. Operations to access or modify
building-blocks requested by algs,
performed by Pandora.

• This design is well-suited to the multi-algorithm approach: use a large number of decoupled
algorithms, each targeting specific event topologies, typically merging or splitting Clusters.

Working with Pandora J. S. Marshall

Implementation

4

• The SDK consists of a dependency-free C++ library and its associated APIs. It provides
an Event Data Model (EDM) for managing pattern-recognition problems.

• Instances of objects in the EDM are owned by Pandora Managers and are stored in named lists.
The Managers are able to create new objects, delete objects, create and save new lists, etc.

• The Managers provide a complete set of low-level operations that allow all the high-level
operations likely to be needed by pattern-recognition algorithms to be satisfied.

Pandora ManagerAlgorithm

Discussed in
this talk:

Working with Pandora J. S. Marshall

Historical Context

5

Traditional
calorimetry

Particle flow
approach

• SDK developed for reimplementation
of PFA at future e+e- linear collider.

• Informed by lessons learned during
original PandoraPFA implementation:

• Support multi-algorithm approach

• Support reclustering and recursion

• Then applied for LArTPC patrec.

HCAL

TPC
EC

AL

n

𝛑+

γ

HCAL

EC
AL

TPC

Typical event topologies

Working with Pandora J. S. Marshall

Event Data Model

6

CaloHit Track
(LC use only)

MC
Particle

Cluster Vertex

Particle
(PFO)

Algorithm Objects

Input Objects

Child object can be
added to parent

MC Particle Link

Created by Algs

Created by Client App

Pandora Managed Types

• EDM consists of classes to represent the input building-blocks for pattern-recognition
problems and the structures that can be created using these building-blocks.

• Provides well-defined development environment for managing pattern-recognition problems
and allows for independence of algorithms, which can only communicate via the EDM.

• EDM aims to be self-describing, with each object providing all the information required to
allow investigation and processing by the pattern-recognition algorithms.

Working with Pandora J. S. Marshall

Input Objects

7

• Input Objects are the building-blocks for pattern recognition, typically created by the
client app before algorithm operations begin.

• Their properties are defined at creation and cannot be changed. They are instead used to
build new constructs, termed “Algorithm Objects".

• The usage of all Input Objects is monitored to ensure that no double-counting/usage occurs.

CaloHit

Track
(LC use only)

MC
Particle

Primary building-block, defining a position and extent in space (or time), with
an associated intensity or energy measurement and detector location details.

Represents a continuous trajectory of well-defined space-points, with helix
parameterisation. Track parent-child and sibling relationships supported.

For development purposes, provide details of true pattern-recognition solution.
Support parent-child links and can be associated to CaloHits and Tracks.

Working with Pandora J. S. Marshall

Algorithm Objects

8

Cluster

Vertex

Particle

• Algorithm Objects represent the higher-level structures created in order to solve
pattern-recognition problems.

• Pandora carefully manages the allocation and manipulation of these objects and all non-const
operations can only be requested by algorithms via the Pandora Content APIs.

• Pandora is then able to perform the memory-management for these objects.

Collection of CaloHits and main working-horse for algorithms (which create,
merge, split Clusters). Provides some derived properties of CaloHit collection.

The identification and classification of a specific point in space, typically used
to flag positions of particle creation or decay.

Container of Clusters, Tracks and Vertices, together with metadata describing
e.g. particle type. Ultimate Pandora output and can represent a hierarchy.

Working with Pandora J. S. Marshall

Object Creation

9

PandoraApi::CaloHit::Parameters caloHitParameters;
caloHitParameters.m_positionVector = ...
caloHitParameters.m_expectedDirection = ...
...

PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::CaloHit::Create(*pPandora, caloHitParameters));

In client app:

Provides clean, simple interface to create any/all Pandora objects:

i. Construct parameters, e.g. PandoraApi::CaloHit::Parameters
ii. Assign properties to parameters public member variables
iii. Request object creation, e.g. PandoraApi::CaloHit::Create(…)
iv. Failure to assign to all properties will raise an exception

• Instantiation of objects in Pandora follows a pattern with a clean and simple interface.

• Object creation is typically requested by the client app (Input Objects) or by an algorithm
(Algorithm Objects). Must create a parameters instance and provide all information up-front.

• Request to create object then made to Pandora, which will check that all required
information has been provided and, if so, perform the allocation.

• The new object instance is owned and managed by Pandora (see upcoming discussion of
object Managers), but can be accessed and manipulated by algorithms, via the APIs.

Working with Pandora J. S. Marshall

Client Application

10

• A client (or translation) app is responsible for providing Input Objects that define the
pattern-recognition problem and for persisting the output Particles.

• Also responsible for creating Pandora instances, bringing-together (collections of) algorithm
implementations and for configuring the reconstruction via the Pandora Settings XML file.

• Algorithms depend on Pandora SDK, but can also have as many external dependencies as
required. The client app depends on Pandora and on all libraries providing algorithms.

• The actual algorithm instances used in the reconstruction are not created unless specified in
the Pandora Settings; created when the XML file is parsed by Pandora.

Built with client
app, or in libraries
of Pandora content

Working with Pandora J. S. Marshall

Managers

11

• At heart of Pandora design are the Managers, which
own all instances of objects in Pandora EDM.

• The Managers are designed to provide a complete set of
low-level object manipulation functions.

• Algs request high-level services (e.g. merge two Clusters),
which are then satisfied when the hidden implementation
calls the low-level Manager functions in the correct order.

• Approach helps ensure that implementation is extensible,
easy to maintain and rather human-readable.

• Key part of design is that algorithms can only access or
modify managed objects via the APIs, so Managers are able
to perform memory-management.

A Pandora instance is simply a container of Manager
instances and API implementation instances

Working with Pandora J. S. Marshall

Managers

12

 /**
 * @brief Get the current list
 *
 * @param algorithm the algorithm calling this function
 * @param pT to receive the address of the current list
 * @param listName to receive the current list name
 */
 template <typename T>
 static pandora::StatusCode GetCurrentList(const pandora::Algorithm &algorithm, const T *&pT, std::string &listName);

• Pandora objects are heap-allocated and their addresses are stored in named object
lists, owned by the relevant object Manager instance.

• Object lists are std::lists and so hold content orderings reflecting orders in which they were
populated, via a client app or algorithm.

• Each Manager holds a mapping from the list name (string) to address of the object list. It also
stores the set of saved list names, plus the name of the algorithm-designated “current” list.

• Algorithms can use the Pandora APIs to receive const references to the object lists
from the Managers. Algorithms can access lists by name or ask for the current list.

• Managers hold address of associated Pandora instance and record details of all algs running:
e.g. current list name when alg began, names of any temporary lists created.

PandoraContentApi.h

Working with Pandora J. S. Marshall

Managers

13

Manager template base class
provides functionality for
supervising and accessing

named lists of objects.

Derived classes provide
functionality reflecting different

rules governing creation and usage
of Algorithm and Input Objects.

pandora::Manager< T >

m_nameToListMap

m_algorithmInfoMap

m_currentListName

m_savedLists

m_pPandora

NULL_LIST_NAME

+ Manager()

+ ~Manager()

GetList()

GetCurrentList()

GetCurrentListName()

GetAlgorithmInputList()

GetAlgorithmInputListName()

ResetCurrentListToAlgorithmInputList()

ReplaceCurrentAndAlgorithmInputLists()

DropCurrentList()

CreateTemporaryListAndSetCurrent()

RegisterAlgorithm()

ResetAlgorithmInfo()

ResetForNextEvent()

EraseAllContent()

CreateInitialLists()

Modifiable()

pandora::AlgorithmObjectManager< T >

m_canMakeNewObjects

+ AlgorithmObjectManager()

+ ~AlgorithmObjectManager()

CreateTemporaryListAndSetCurrent()

MoveObjectsToTemporaryListAndSetCurrent()

SaveObjects()

MoveObjectsBetweenLists()

TemporarilyReplaceCurrentList()

DeleteObjects()

DeleteTemporaryObjects()

GetResetDeletionObjects()

ResetCurrentListToAlgorithmInputList()

ReplaceCurrentAndAlgorithmInputLists()

DropCurrentList()

ResetAlgorithmInfo()

EraseAllContent()

pandora::InputObjectManager< T >

INPUT_LIST_NAME

+ InputObjectManager()

+ ~InputObjectManager()

CreateInputList()

CreateTemporaryListAndSetCurrent()

SaveList()

AddObjectsToList()

RemoveObjectsFromList()

EraseAllContent()

CreateInitialLists()

Working with Pandora J. S. Marshall

Input Object Managers

14

CaloHit Track
(LC use only)

MC
Particle

• Input Objects can be created, via APIs, by any function with access to the Pandora
instance. Most common point of creation is the client application.

• Newly-requested objects are created on heap by relevant Manager, and address is stored in a
specific named list: the “Input” list.

• Idea is that Input Objects cannot be modified or deleted by algorithms, although new, refined
objects could be created. Input list keeps full record of all instances created.

• Algorithms can choose to work with Input list or, more typically, save new lists (under new
names) containing only a subset of the Input list (Input Objects can appear in multiple lists).

• Memory-management is simple, as all Input Objects are deleted, and all lists erased/reset, only
when the client application asks to reset Pandora between events.

Working with Pandora J. S. Marshall

Algorithm Object Managers

15

Cluster Vertex Particle

• Memory-management is considerably more complex for Algorithm Objects, which will
be created, modified and deleted as the pattern recognition progresses.

• Pandora enforces a specific approach which maintains flexibility, but is ultimately built around
its flagship reclustering functionality.

• To create a new Algorithm Object, must first instruct relevant Manager to have a new,
temporary object list as the current list, waiting to receive newly-created instances.

• The temporary list is associated with the alg that requested it. When this alg finishes
processing the event, all its temporary lists are erased and the list contents deleted.

• In order to persist the Algorithm Objects, the algorithm must first ask to save some/all the
objects in a new or existing named list.

• Unlike Input Objects, it is enforced that Algorithm Objects can exist in only one list.

Working with Pandora J. S. Marshall

Monitoring Object Usage

16

 /**
 * @brief Is object, or a list of objects, available as a building block
 *
 * @param algorithm the algorithm calling this function
 * @param pT address of the object
 *
 * @return boolean
 */
 template <typename T>
 static bool IsAvailable(const pandora::Algorithm &algorithm, const T *const pT);

• Algorithm Objects are typically containers of other objects. Clusters, are containers of
CaloHits, whilst Particles are containers of Clusters, Tracks and Vertices.

• Important role played by the Managers is to monitor object usage and ensure that no double-
counting can occur.

• Monitoring generally simple, but significantly more complex when reclustering allows
algorithms to simultaneously explore multiple alternative Cluster configurations!

• Enforce that objects cannot appear in multiple objects (e.g. must remove from first before
allowed to add to second). In reclustering, rules applied for each set of Cluster candidates.

Algs can use APIs to ask
whether objects are

available or have already
been used

PandoraContentApi.h

Working with Pandora J. S. Marshall

Algorithms

17

• Algs contain step-by-step instructions, using Pandora
APIs to request object creation/modification services.

• Algs inherit from the Pandora Process abstract base class.
Inherited functionality controls handshaking between
Pandora instance and algorithm instance.

• Process provides ability to receive a ReadSettings callback
with an XML handle (tinyxml) from which configurable
parameters can be extracted. Also an Initialize callback.

• The Algorithm purely abstract base class provides the
interface for the Run callback, which is called each event
and is the entry point for all event processing.

• Algorithm Factories registered (under a specific name),
by the client app are extremely simple:

• Must allocate instance of derived algorithm type and return
pointer to Algorithm base class.

Working with Pandora J. S. Marshall

Algorithm Configuration

18

 <algorithm type = "LArCandidateVertexCreation">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputVertexListName>CandidateVertices</OutputVertexListName>
 <ReplaceCurrentVertexList>true</ReplaceCurrentVertexList>
 </algorithm>
 <algorithm type = "LArVertexSelection">
 <InputCaloHitListNameU>CaloHitListU</InputCaloHitListNameU>
 <InputCaloHitListNameV>CaloHitListV</InputCaloHitListNameV>
 <InputCaloHitListNameW>CaloHitListW</InputCaloHitListNameW>
 <OutputVertexListName>SelectedVertices</OutputVertexListName>
 <ReplaceCurrentVertexList>true</ReplaceCurrentVertexList>
 <BeamMode>true</BeamMode>
 </algorithm>

• Algs configured by XML file provided by client application. Algorithm Manager parses
file and looks for algorithm tags within the top-level <Pandora></Pandora> tags.

• Extracts algorithm type, which must match name of a registered Alg Factory. If match found,
Factory creates new instance of desired type and Manager stores pointer to base class.

• After creation, Manager will call ReadSettings member function of new algorithm, providing a
handle to the XML element describing the algorithm.

• ReadSettings can demand presence of specific child XML tags, or can search for optional tags
to override default parameter values, if present.

When client app calls
ProcessEvents, Pandora calls
Run for each top-level algorithm,

in order, then returns thread

Working with Pandora J. S. Marshall

Nested Algorithms

19

 <algorithm type = "LArClusteringParent">
 <algorithm type = "LArTrackClusterCreation" description = "ClusterFormation"/>
 <InputCaloHitListName>CaloHitListU</InputCaloHitListName>
 <ClusterListName>ClustersU</ClusterListName>
 <ReplaceCurrentCaloHitList>false</ReplaceCurrentCaloHitList>
 <ReplaceCurrentClusterList>true</ReplaceCurrentClusterList>
 </algorithm>

• The Algorithm Manager only searches for algorithm XML tags within the top-level
Pandora tags. These are the algorithms to be called, in order, each event.

• In its ReadSettings callback, however, each algorithm is given full control of parsing details
contained within its XML tag.

• The algorithm can search for nested child algorithms, which could be specified in a named
list, or may be identified via an XML description attribute.

• The parent alg can use an API to instruct the Alg Manager to construct/configure a new
child algorithm instance and return the unique name of the child algorithm.

• During event processing the parent algorithm can use an API to ask to run the child
algorithm with the stored unique name.

Nesting allows parent alg
to e.g. manipulate current

object lists, then call
reusable child algs to
process list contents

child alg

Working with Pandora J. S. Marshall

Algorithm Tools

20

Algorithms must provide Run implementation;
AlgorithmTools have user-defined interface to

provide services to Algorithms

• Child alg functionality promotes the
development of small, reusable algs to
perform specific operations.

• Parent and child algs are decoupled and
can only communicate by manipulating
objects in EDM or the object lists.

• AlgorithmTools inherit from the Process
class, so have all the handshaking and
configuration functionality of an algorithm.

• Don’t receive Run callback. Instead, parent
alg defines interface for its tools and is
given access to pointers to tool instances.

• Parent alg can create complex object, then
give it to its tools for processing. Tool
selection/configuration specified via XML.

Working with Pandora J. S. Marshall

APIs

21

• APIs are static functions, typically
templated to allow operations on each
of the different types in Pandora EDM.

• Content APIs only usable by algs and take
alg reference as argument, allowing static
functions to resolve to a Pandora instance.

• Careful friending of classes ensure the API
implementation instance can call Manager
functionality inaccessible to other classes.

• APIs used by client app take a reference to
a Pandora instance as an argument, but
otherwise work in identical manner.

• The final algorithms can be structured
around their key API calls and can be
written in simple pseudo-code form.

Working with Pandora J. S. Marshall

Reclustering

22

1. Ask for current Cluster list, spot issues and ask to recluster
Original Clusters moved to a new temporary list; current CaloHit list changed

2. Ask to run a clustering algorithm
New temporary list formed and filled by child clustering algorithm

3. Calculate figure of merit for new Cluster candidates

4. Repeat stages 2 and 3 as required
Can re-use original clustering alg, with different parameters, or try a new alg

5. Choose most appropriate Cluster candidates
Cluster lists will be tidied as required; original Clusters are seamlessly replaced

+ Local reclustering allows
direct comparison of two

Cluster configurations
within single alg

• Reclustering allows algorithms to simultaneously explore multiple different Cluster
configurations. Clustering results can be compared side-by-side and the best selected.

• Pandora will automatically tidy-up any discarded Cluster options and the selected Clusters
will seamlessly replace the originals, which entered the reclustering process.

• Instead of selecting the best algorithmic approach to solve a problem, the user is able to
control a process whereby the approach that best solved the problem is identified.

Working with Pandora J. S. Marshall

Geometry and Plugins

23

• Client app can provide basic detector geometry,
which can then be accessed by algorithms.

• Can specify named sub detectors, with assumed
polygonal structure.

• Can also provide information about Line, Concentric
and Box Gaps in detector active volume.

• In general, existing Pandora algs try to avoid use of
geometry info and work with Hits/Clusters alone.

• Plugins inherit from the Process base class and
have interfaces tailored to their specific usage:

• Particle id,

• Cluster energy estimators,

• EM shower profile characterisation,

• Magnetic field maps access,

• Division of detector volume into layers.

TPC_VIEW_V

LineGaps

v [cm]

x [cm]

Blue: Low Weight
Green: High Weight

EM shower core
reduced in energy

(weight < 1)

Surrounding Hits have energy
increased (weight > 1)

E.g. Novel hadronic energy estimator at ILC

Working with Pandora J. S. Marshall

Visualisation

24

• PandoraMonitoring package depends on the Pandora SDK and ROOT. It understands
how to translate Pandora objects into ROOT TEVE for visualisation.

• PandoraMonitoring APIs allow algs to perform customised, visual debugging. Algs can
choose which objects to display, when and in which colours. Can add guiding markers, etc.

• Reusable visualisation algs can be added to PandoraSettings XML config files at different
points in multi-algorithm reconstruction without rebuilding.

• Also offers TTree-writing and histogram functionality, whilst controlling usage of ROOT.

 . . .
 <algorithm type = "LArLayerSplitting"/>
 <algorithm type = “LArLongitudinalAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = “LArTransverseAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = "LArLongitudinalExtension"/>
 <algorithm type = "LArTransverseExtension"/>
 <algorithm type = "LArOvershootSplitting"/>
 <algorithm type = "LArBranchSplitting"/>
 <algorithm type = “LArKinkSplitting"/>
 . . .

e.g. Add markers
to check cone fit

to a cluster

e.g. Add two
event display

algs to
examine

changes as
reconstruction

progresses

Working with Pandora J. S. Marshall

Persistency

25

// ATTN: Edited for slide display; inc. removal of API return value checks
int main(int argc, char *argv[])
{
 Parameters parameters;

 if (!parameters.ParseCommandLine(argc, argv))
 return 1;

 const pandora::Pandora *const pPandora(new pandora::Pandora());
 LArContent::RegisterAlgorithms(*pPandora);
 PandoraApi::ReadSettings(*pPandora, parameters.m_pandoraSettingsFile);

 unsigned int nEvents(0);
 while (nEvents++ < parameters.m_nEventsToProcess)
 {
 PandoraApi::ProcessEvent(*pPandora);
 PandoraApi::Reset(*pPandora);
 }

 delete pPandora;
 return 0;
}

• Pandora persistency allows Input Objects to be serialised in .pndr files (small,
portability not guaranteed) or .xml files (large, but compressible).

• No longer need full client/translation app to develop or test algs: can move to lightweight
environment where Entry Point constructs Pandora instance and runs reconstruction.

• Enables development without delays or complications introduced by parent software
framework and build system: rebuild and run in seconds, making for healthy development.

 <!-- ALGORITHM SETTINGS -->
 <algorithm type = "LArEventReading">
 <EventFileName>/PATH/TO/Events.pndr</EventFileName>
 <ShouldReadEvents>true</ShouldReadEvents>
 <SkipToEvent>0</SkipToEvent>
 </algorithm>

• Self-describing Input Objects: algs
don’t need to worry how/where
object properties were calculated.

• Objects serialised/deserialised by
Pandora, following requests from
EventReading, EventWriting algs.

Working with Pandora J. S. Marshall 26

HCAL

TPC
EC

AL

n

𝝅+

𝜸

ILC/CLIC
3D inputs

wire

time

LArTPC
3x2D inputs

Nucl. Instrum. Meth. A611, 25 (2009)

Eur. Phys. J. C 75, 439 (2015)

Nucl. Instrum. Meth. A700, 153 (2013)ProtoDUNE-SP paper soon
Eur. Phys. J. C 78, 82 (2018)

https://github.com/PandoraPFA

https://www.sciencedirect.com/science/article/abs/pii/S0168900209017264
https://link.springer.com/article/10.1140/epjc/s10052-015-3659-3
https://www.sciencedirect.com/science/article/abs/pii/S0168900212011734?via=ihub
https://link.springer.com/article/10.1140/epjc/s10052-017-5481-6
https://github.com/PandoraPFA

Working with Pandora J. S. Marshall 27

Questions or comments?

Pandora Client App
John Marshall for the Pandora Team
22nd June 2022

Working with Pandora J. S. Marshall

Create Pandora Instance

29

/**
 * @brief Pandora class
 */
class Pandora
{
public:
 /**
 * @brief Default constructor
 */
 Pandora();

 ...
};

const pandora::Pandora *const pPandora = new pandora::Pandora();

Pandora.h

In client app:

• Simple to create a Pandora instance (on stack or
heap) via public default constructor.

• Will then find that its functionality is only
available via its APIs, which are divided into:

i. PandoraAPIs for use by a client app.

ii. PandoraContentAPIs for use by algorithms.

Member variables are addresses of
Manager instances, API implementation

instances and a Settings instance.
Services are typically accessed via APIs.

Working with Pandora J. S. Marshall

Register Content

30

 /**
 * @brief Register an algorithm factory with pandora
 *
 * @param pandora the pandora instance to register the algorithm factory with
 * @param algorithmType the type of algorithm that the factory will create
 * @param pAlgorithmFactory the address of an algorithm factory instance
 */
 static pandora::StatusCode RegisterAlgorithmFactory(const pandora::Pandora &pandora, const std::string &algorithmType,
 pandora::AlgorithmFactory *const pAlgorithmFactory);

 /**
 * @brief Register all the lar content algorithms and tools with pandora
 *
 * @param pandora the pandora instance with which to register content
 */
 static pandora::StatusCode RegisterAlgorithms(const pandora::Pandora &pandora);

 /**
 * @brief Register lar coordinate transformation plugin with pandora
 *
 * @param pandora the pandora instance with which to register content
 * @param pLArTransformationPlugin the address of the lar transformation plugin
 */
 static pandora::StatusCode SetLArTransformationPlugin(const pandora::Pandora &pandora,
 lar_content::LArTransformationPlugin *const pLArTransformationPlugin);

 const pandora::Pandora *const pPandora = new pandora::Pandora();
 PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, LArContent::RegisterAlgorithms(*pPandora));
 PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, LArContent::SetLArTransformationPlugin(*pPandora, new MicroBooNETransformationPlugin));

 /**
 * @brief Transform from (U,V) to W position
 *
 * @param U the U position
 * @param V the V position
 */
 virtual double UVtoW(const double u, const double v) const = 0;

 /**
 * @brief Transform from (U,V) to world volume Y coordinate
 *
 * @param U the U position
 * @param V the V position
 */
 virtual double UVtoY(const double u, const double v) const = 0;

 ...

PandoraApi.h

LArContent.h

In client app:
Note preprocessor macro
checking API return values

LArTransformationPlugin interface

API to register an algorithm factory, giving Pandora
instance ability to instantiate a specific algorithm type

E.g. Quickly register all 80+ algorithm
factories in the LAr TPC ‘content’ library

Working with Pandora J. S. Marshall

Read Pandora Settings

31

 /**
 * @brief Read pandora settings
 *
 * @param pandora the pandora instance to run the algorithms initialize
 * @param xmlFileName the name of the xml file containing the settings
 */
 static pandora::StatusCode ReadSettings(const pandora::Pandora &pandora, const std::string &xmlFileName);

 PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::ReadSettings(*m_pPandora, configFileName));

• Specify which algorithms to instantiate
and the order of algorithm execution.

• Parent algorithms can run (lists of) child
algorithms, or (lists of) algorithm tools.

 <!-- 3D track reconstruction -->
 <algorithm type = "LArThreeDTransverseTracks">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputPfoListName>TrackParticles3D</OutputPfoListName>
 <TrackTools>
 <tool type = "LArClearTracks"/>
 <tool type = "LArLongTracks"/>
 <tool type = “LArOvershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArOvershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = "LArMissingTrackSegment"/>
 <tool type = "LArTrackSplitting"/>
 <tool type = “LArLongTracks">
 <MinMatchedFraction>0.75</MinMatchedFraction>
 <MinXOverlapFraction>0.75</MinXOverlapFraction>
 </tool>
 <tool type = "LArMissingTrack"/>
 </TrackTools>
 </algorithm>

E.g. LArTPC XML snippet - 3D track reco

In client app:

PandoraApi.h

path to file describing Pandora reconstruction config.

Working with Pandora J. S. Marshall

Create Pandora Input

32

 /**
 * @brief Object creation helper class
 *
 * @param PARAMETERS the type of object parameters
 * @param OBJECT the type of object
 */
 template <typename PARAMETERS, typename OBJECT>
 class ObjectCreationHelper
 {
 public:
 typedef PARAMETERS Parameters;
 typedef OBJECT Object;

 /**
 * @brief Create a new object from a user factory
 *
 * @param pandora the pandora instance to create the new object
 * @param parameters the object parameters
 * @param factory the factory that performs the object allocation
 */
 static pandora::StatusCode Create(const pandora::Pandora &pandora, const Parameters ¶meters,
 const pandora::ObjectFactory<Parameters, Object> &factory = pandora::PandoraObjectFactory<Parameters, Object>());
 };

 typedef ObjectCreationHelper<CaloHitParameters, pandora::CaloHit> CaloHit;
 typedef ObjectCreationHelper<MCParticleParameters, pandora::MCParticle> MCParticle;

PandoraApi::CaloHit::Parameters caloHitParameters;
caloHitParameters.m_positionVector = ...
caloHitParameters.m_expectedDirection = ...
...

PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::CaloHit::Create(*pPandora, caloHitParameters));

In client app:

PandoraApi.h

Provides clean, simple interface to create any/all Pandora objects:

i. Construct parameters, e.g. PandoraApi::CaloHit::Parameters
ii. Assign properties to parameters public member variables
iii. Request object creation, e.g. PandoraApi::CaloHit::Create(…)
iv. Failure to assign to all properties will raise an exception

Advanced functionality: Can provide custom object instantiation
factory to ‘decorate’ base objects in Pandora Event Data Model

Working with Pandora J. S. Marshall

Create Pandora CaloHits

33

 /**
 * @brief CaloHitParameters class
 */
 class CaloHitParameters : public pandora::ObjectParameters
 {
 public:
 pandora::InputCartesianVector m_positionVector; ///< Position vector of center of calorimeter cell, units mm
 pandora::InputCartesianVector m_expectedDirection; ///< Unit vector in direction of expected hit propagation
 pandora::InputCartesianVector m_cellNormalVector; ///< Unit normal to sampling layer, pointing outwards from the origin
 pandora::InputCellGeometry m_cellGeometry; ///< The cell geometry type, pointing or rectangular
 pandora::InputFloat m_cellSize0; ///< Cell size 0 [pointing: eta, rect: up in ENDCAP, along beam in BARREL, units mm]
 pandora::InputFloat m_cellSize1; ///< Cell size 1 [pointing: phi, rect: perp. to size 0 and thickness, units mm]
 pandora::InputFloat m_cellThickness; ///< Cell thickness, units mm
 pandora::InputFloat m_nCellRadiationLengths; ///< Absorber material in front of cell, units radiation lengths
 pandora::InputFloat m_nCellInteractionLengths; ///< Absorber material in front of cell, units interaction lengths
 pandora::InputFloat m_time; ///< Time of (earliest) energy deposition in this cell, units ns
 pandora::InputFloat m_inputEnergy; ///< Corrected energy of calorimeter cell in user framework, units GeV
 pandora::InputFloat m_mipEquivalentEnergy; ///< The calibrated mip equivalent energy, units mip
 pandora::InputFloat m_electromagneticEnergy; ///< The calibrated electromagnetic energy measure, units GeV
 pandora::InputFloat m_hadronicEnergy; ///< The calibrated hadronic energy measure, units GeV
 pandora::InputBool m_isDigital; ///< Whether cell should be treated as digital
 pandora::InputHitType m_hitType; ///< The type of calorimeter hit
 pandora::InputHitRegion m_hitRegion; ///< Region of the detector in which the calo hit is located
 pandora::InputUInt m_layer; ///< The subdetector readout layer number
 pandora::InputBool m_isInOuterSamplingLayer; ///< Whether cell is in one of the outermost detector sampling layers
 pandora::InputAddress m_pParentAddress; ///< Address of the parent calo hit in the user framework
 };

PandoraApi.h

• List of variables to which client app must assign before requesting CaloHit creation.

• Still oriented towards collider experiments: have a derived class to ‘decorate’ with LAr-specific
properties. Information available to algs, but doesn’t mean any/all properties need to be used.

• Algorithms can access information stored in Hits, but do not need to know how properties
were obtained: client application isolates algorithms from input software framework.

InputTypes template checks assignment operator is used, plus vetoes NaN and INF assignments

Working with Pandora J. S. Marshall

Create Pandora MCParticles

34

 /**
 * @brief MCParticleParameters class
 */
 class MCParticleParameters : public pandora::ObjectParameters
 {
 public:
 pandora::InputFloat m_energy; ///< The energy of the MC particle, units GeV
 pandora::InputCartesianVector m_momentum; ///< The momentum of the MC particle, units GeV
 pandora::InputCartesianVector m_vertex; ///< The production vertex of the MC particle, units mm
 pandora::InputCartesianVector m_endpoint; ///< The endpoint of the MC particle, units mm
 pandora::InputInt m_particleId; ///< The MC particle's ID (PDG code)
 pandora::InputMCParticleType m_mcParticleType; ///< The type of mc particle, e.g. vertex, 2D-projection, etc.
 pandora::InputAddress m_pParentAddress; ///< Address of the parent MC particle in the user framework
 };

 /**
 * @brief Set calo hit to mc particle relationship
 *
 * @param pandora the pandora instance to register the relationship with
 * @param pCaloHitParentAddress address of calo hit in the user framework
 * @param pMCParticleParentAddress address of mc particle in the user framework
 * @param mcParticleWeight weighting to assign to the mc particle
 */
 static pandora::StatusCode SetCaloHitToMCParticleRelationship(const pandora::Pandora &pandora, const void *const pCaloHitParentAddress,
 const void *const pMCParticleParentAddress, const float mcParticleWeight = 1);

 /**
 * @brief Set parent-daughter mc particle relationship
 *
 * @param pandora the pandora instance to register the relationship with
 * @param pParentAddress address of parent mc particle in the user framework
 * @param pDaughterAddress address of daughter mc particle in the user framework
 */
 static pandora::StatusCode SetMCParentDaughterRelationship(const pandora::Pandora &pandora, const void *const pParentAddress,
 const void *const pDaughterAddress);

PandoraApi.h

Properties that must be provided before MCParticle creation can be requested

Set parent-child relationships to full describe MCParticle hierarchy in Pandora

Set (custom/energy-weighted) relationships between Hits and MCParticles in Pandora

Working with Pandora J. S. Marshall

Run Pandora Algorithms

35

 /**
 * @brief Process an event
 *
 * @param pandora the pandora instance to process event
 */
 static pandora::StatusCode ProcessEvent(const pandora::Pandora &pandora);

PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::ProcessEvent(*pPandora));

PandoraApi.h

In client app:

• Pass thread to a Pandora instance, which will process the event by running the
algorithms as specified in the Pandora Settings XML file.

• Algorithms will form Clusters, Vertices and Particles to represent the pattern-
recognition solution. The thread will then be returned for output to be persisted.

Working with Pandora J. S. Marshall

Extract Pandora Output

36

 /**
 * @brief Get the current pfo list
 *
 * @param pandora the pandora instance to get the objects from
 * @param pPfoList to receive the address of the particle flow objects
 */
 static pandora::StatusCode GetCurrentPfoList(const pandora::Pandora &pandora, const pandora::PfoList *&pPfoList);

const pandora::PfoList *pPfoList(nullptr);
PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::GetCurrentPfoList(*pPandora, pPfoList));

In client app:

PandoraApi.h

• Access list of Particles as specified/selected by final algorithm, and designated to be
the ‘current’ list. Particles may be organised into a hierarchy.

• From Particles, can navigate to constituent Clusters, (Tracks,) Vertices and CaloHits.
Can use ParentAddresses in Pandora objects to identify associated inputs.

Working with Pandora J. S. Marshall

Reset Pandora

37

 /**
 * @brief Reset pandora to process another event
 *
 * @param pandora the pandora instance to reset
 */
 static pandora::StatusCode Reset(const pandora::Pandora &pandora);

PANDORA_THROW_RESULT_IF(pandora::STATUS_CODE_SUCCESS, !=, PandoraApi::Reset(*pPandora));

PandoraApi.h

In client app:

• Ask to reset a Pandora instance, deleting all objects and lists made by algorithms
and all input building-blocks provided by the client application.

• Pandora instance is then ready to begin receiving new Hits, (Tracks) and
MCParticles to describe the next input event.

Working with Pandora J. S. Marshall 38

Questions or comments?

Pandora ILD Calibration
John Marshall for the Pandora Team
22nd June 2022

Working with Pandora J. S. Marshall

https://github.com/PandoraPFA/LCPandoraAnalysis

40

https://github.com/PandoraPFA/LCPandoraAnalysis

