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Deep Inelastic Scattering e p → eX

e e

γ∗

p
X

In the Björken limit i.e. when the photon virtality Q2 = −q2 and the squared
hadronic c.m. energy (p+ q)2 become large, with the ratio xB = Q2

2p·q fixed,
the cross section factorizes into a hard partonic subprocess calculable in the
pertutbation theory, and a parton distributions (PDFs).
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DIS

I Parton distributions encode the distribution of longitudinal momentum
and polarization carried by quarks, antiquarks and gluons within fast
moving hadron

I PDFs don’t provide infomation about how partons are distributed in the
transverse plane and ...

I about how important is the orbital angular momentum in making up the
total spin of the nucleon.

I For the last 20+ years - growing interest in the exclusive scattering
processes, which may shed some light on these issues through the
generalized parton distributions (GPD).
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DVCS

The simplest and best known process is Deeply Virtual Compton Scattering:
e p → e p γ

e e

γ∗

p p

γ

Factorization into GPDs and perturbative coefficient function - on the level of
amplitude.

DIS : σ = PDF⊗ partonic cross section
DVCS : M = GPD⊗ partonic amplitude
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DVCS

´ µ ´ µ

È

P P

xP xP

γ∗(q) γ∗(q)

È

(1+ ξ)P (1− ξ)P

(x + ξ)P (x − ξ)P

γ∗(q) γ(q′ )

I Cross section of Deep Inelastic Scattering is given by the imaginary part
of the left diagram

I Amplitude of Deeply Virtual Compton Scattering is given by right diagram
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Symmetric variables

P =
p+ p′

2
, q̄ =

q + q′

2

Generalized Bjorken variable:

ξ =
−q̄2

2q̄ · P ≈
xB

2− xB
, xB =

Q2

2q · p

momentum transfer between proton initial and final state:

t = (p′ − p)2

In the convenient reference frame, where P has only positive time- and z-
components, and light vector are defined as:

v+ = (1, 0, 0, 1)
1√
2

, v− = (1, 0, 0,−1)
1√
2

(−2ξ) has an interpretation of the fraction of momentum transport in "+"
direction (ξ - skewness).
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GPD definition.

F q =
1

2

∫
dz−

2π
eixP

+z−〈p′| q̄(−1

2
z) γ+q(

1

2
z) |p〉

∣∣∣
z+=0, z=0

=
1

2P+

[
Hq(x, ξ, t) ū(p′)γ+u(p) + Eq(x, ξ, t) ū(p′)

iσ+α∆α

2m
u(p)

]
,

F g =
1

P+

∫
dz−

2π
eixP

+z−〈p′|G+µ(−1

2
z)Gµ

+(
1

2
z) |p〉

∣∣∣
z+=0, z=0

=
1

2P+

[
Hg(x, ξ, t) ū(p′)γ+u(p) + Eg(x, ξ, t) ū(p′)

iσ+α∆α

2m
u(p)

]
,

I interpretation, ERBL, DGLAP

ξ−x−ξ− x

x
−ξ ξ0 1−1

+ξxxξ− x+ξ x−ξ

I Factorization scale dependance,
I Three variables x, ξ, t .
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GPD - properties,
I Forward limit:

Hq(x, 0, 0) = q(x) , for x > 0 ,

Hq(x, 0, 0) = −q̄(x) , for x < 0 ,

Hg(x, 0, 0) = xg(x) ,

similarly for polarized disributions and PDFs.
I Reduction to form factors:∫ 1

−1

dxHq(x, ξ, t) = F q1 (t),

∫ 1

−1

dxEq(x, ξ, t) = F q2 (t),

where the Dirac and Pauli form factors

〈p′| q̄(0)γµq(0) |p〉 = ū(p′)

[
F q1 (t) γµ + F q2 (t)

iσµα∆α

2m

]
u(p),

I Ji sum rule:

lim
t→0

∫ 1

−1

dx x [Hf (x, ξ, t) + Ef (x, ξ, t)] = 2Jf

where Jf is fraction of the proton spin carried by quark f (including spin
and orbital angular momentum).
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Energy momentum tensor and D-term

I Gravitational Form Factors:

〈p′, s′|T̂ aµν(x)|p, s〉 = ū′
[
Aa(t)

PµPν
m

+ Ja(t)
i P{µσν}ρ∆

ρ

2m

+ Da(t)
∆µ∆ν − gµν∆2

4m
+m c̄a(t)gµν

]
u ei(p

′−p)x.

I Form Factor D(t) connected to pressure
I fixed-t dispersion relation for DVCS

ReH(ξ, t) = ∆(t) + P.V.

∫ 1

0

1

π
ImH(x, t)

(
1

ξ − x ∓
1

ξ + x

)
dx .

with some approximations: ∆(t) ∼
∑
q Dq(t) + . . . First attempts made

(Burkert et al, Nature 557 (2018)), but difficult to perform in a model
independent way.
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Impact parameter representation

At ξ = 0 ⇒ −t = ∆2
⊥ :

H(x,b⊥) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥H(x, 0,−∆⊥)

can be interpreted as probability of finding a parton with longitudinal
momentum fraction x at a given b⊥.
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DVCS - Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are
defined through relations:

Aµν(ξ, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµνT

(
H(ξ, t) γ+ + E(ξ, t)

iσ+ρ∆ρ

2M

)
+ iεµνT

(
H̃(ξ, t) γ+γ5 + Ẽ(ξ, t)

∆+γ5
2M

)]
u(P ) ,

,where:

H(ξ, t) = +

∫ 1

−1

dx

(∑
q

T q(x, ξ)Hq(x, ξ, t) + T g(x, ξ)Hg(x, ξ, t)

)

GPDs enter through convolutions! At LO in αS :

DVCST q = −e2q
1

x+ ξ − iε − (x→ −x)

DVCSRe(H) ∼ P
∫

1

x+ ξ
Hq(x, ξ, t) , DVCSIm(H) ∼ iπHq(ξ, ξ, t)
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DVCS Observables
I DVCS and Bethe-Heitler

I The lp→ lpγ cross section on an unpolarized target for a given beam
charge, el in units of the positron charge and beam helicity hl/2 can be
written as :

dσhl,el(φ) = dσUU(φ) [1 + hlALU,DVCS(φ) + elhlALU,I(φ) + elAC(φ)] ,

One can define various asymmetries:

AC(φ) =
1

4dσUU(φ)

[
(dσ

+→ + dσ
+←)− (dσ

−→ + dσ
−←)

]
.

ALU,I(φ) =
1

4dσUU(φ)

[
(dσ

+→ − dσ
+←)− (dσ

−→ − dσ
−←)

]
,

ALU,DVCS(φ) =
1

4dσUU(φ)

[
(dσ

+→ − dσ
+←) + (dσ

−→ − dσ
−←)

]
.
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Observables

Acosφ
C ∝ Re

[
F1H+ ξ(F1 + F2)H̃ −

t

4m2
F2E

]
,

Asinφ
LU,I ∝ Im

[
F1H+ ξ(F1 + F2)H̃ −

t

4m2
F2E

]
,

Asinφ
UL,I ∝ Im

[
ξ(F1 + F2)(H+

ξ

1 + ξ
E) + F1H̃ − ξ(

ξ

1 + ξ
F1 +

t

4M2
F2)Ẽ

]
,

Acosφ
LL,I ∝ Re

[
ξ(F1 + F2)(H+

ξ

1 + ξ
E) + F1H̃ − ξ(

ξ

1 + ξ
F1 +

t

4M2
F2)Ẽ

]
,

A
cos (0φ)
LL,DV CS ∝ Re

[
4(1− ξ2)

(
HH̃∗ + H̃H∗

)
− 4ξ2

(
HẼ∗ + ẼH∗ + H̃E∗ + EH̃∗

)
−4ξ

( ξ2

1 + ξ
+

t

4M2

) (
EẼ∗ + ẼE∗

)]
,

A
sin (φ−φs)
UT,DV CS ∝

[
Im (HE∗)− ξIm (H̃Ẽ∗)

]
,

A
sin (φ−φs) cosφ
UT,I ∝ Im

[
−

t

4M2

(
F2H− F1E

)
+ ξ2

(
F1 +

t

4M2
F2

)(
H+ E

)
−ξ2

(
F1 + F2)

(
H̃+

t

4M2
Ẽ
)]
.
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DVCS data
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DVCS data
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Figure: Coverage of the (xBj, Q
2) (left) and (xBj,−t/Q2) (right) phase-spaces by the

experimental data used in DVCS CFFs fit. The data come from the Hall A (H, O),
CLAS (N, M), HERMES (•, ◦), COMPASS (�, �) and HERA H1 and ZEUS (�, ♦)
experiments. The gray bands (open markers) indicate phase-space areas (experimental
points) being excluded from this analysis due to the cuts.
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Example of parametric fit

H.Moutarde, P.Sznajder and JW, Eur.Phys.J. C78 (2018)

I Border function:
For the GPDs Hq and H̃q at ξ = 0 we use an Ansatz that is commonly
used in phenomenological analyses of GPDs:

Gq(x, 0, t) = pdfqG(x) exp(fqG(x)t) .

The profile function, fqG(x), fixes the interplay between the x and t
variables, and it is given by:

fqG(x) = AqG log(1/x) +BqG(1− x)2 + CqG(1− x)x ,

I Skewness function:

gqG(x, ξ, t) =
Gq(x, ξ, t)

Gq(x, 0, t)
,

In our case:
Gq(x, x, t) = Gq(x, 0, t) gqG(x, x, t) ,

We assume the following form (suggested by F. Yuan, Phys. Rev. D69)

gqG(x, x, t) ≡ gqG(x, t) =
aqG

(1− x2)2
(1 + t(1− x)(bqG + cqG log(1 + x))) ,
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PDFs
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Figure: Comparison between PDF sets by NNPDF group and our parameterizations.
The left plot is for uval quarks, while the right one is for dsea quarks. For a given
figure, the black solid curve with the grey band representing 68% confidence level is
for PDFs by NNPDF group, while the blue dashed curve with the hatched band is for
our fit. The curves are evaluated at Q2 = 2 GeV2.

17 / 37



Form Factors - parameters of f qG(x) fitted to elastic data.
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fit results

For the central PDF and EFF replicas the minimum value of the χ2 function is
2346.3 for 2600 experimental points and 13 free parameters, which gives the
reduced value equal to 2346.3/(2600− 13) ≈ 0.91.
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fit vs experiments
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Figure: Comparison between the results of this analysis, some selected GPD models
and experimental data published by Hall A (left) and CLAS (right). The solid curves
and the gray bands surrounding those curves are for the results of this analysis and
68% confidence levels for the uncertainties coming from DVCS data, respectively. The
corresponding bands for (un-)polarized PDFs and EFFs are indicated by the labels.
The dotted curve is for the GK GPD model, while the dashed one is for VGG. The
curves are evaluated at the kinematics of experimental data.
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Compton Form Factors
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Figure: Real (left) and imaginary (right) parts of the CFF H obtained in this work as a
function of ξ at t = −0.3 GeV2 and Q2 = 2 GeV2.
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Figure: Position of up quarks in an unpolarized proton (upper plot) and longitudinal
polarization of those quarks in a longitudinally polarized proton (lower plot) as a
function of the longitudinal momentum fraction x. For the lower plot only the valence
contribution is shown.
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Fit with ANN + Genetic algorithm
H. Moutarde, P. Sznajder, J. Wagner, Eur.Phys.J. C79 (2019)

I ANNs
input
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Figure: Scheme of a single neural network that is used in this analysis to
represent either the real or the imaginary part of a single CFF.

I Genetic algorithm

stopping criteria

generation of
initial population

evaluation

reproduction

mutation

result

Figure: Scheme of the genetic algorithm.
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Observables
PARTONS Fits NN 2019
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Figure: CLAS data for d4σ−UU at xBj = 0.244, t = −0.15 GeV2 and Q2 = 1.79 GeV2 (left)
and for A−UL at xBj = 0.2569, t = −0.23 GeV2, Q2 = 2.019 GeV2 (right). The gray bands
correspond to the results of this analysis. The dotted curve is for the GK GPD model, while
the dashed one is for VGG.
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Figure: HERMES data for Acos 0φ
C (left) and Asin(φ−φS) cosφ

UT,I (right) at t = −0.12 GeV2

and Q2 = 2.5 GeV2.
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results for CFFs
PARTONS Fits NN 2019
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Figure: Real (left) and imaginary (right) parts of the CFF H as a function of ξ for
t = −0.3 GeV2 and Q2 = 2 GeV2. The blue solid line surrounded by the blue
hatched band denotes the result of our previous analysis.
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Figure: Real (left) and imaginary (right) parts of the CFF H̃ as a function of ξ for
t = −0.3 GeV2 and Q2 = 2 GeV2.
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Subtraction Constant
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Status of DVCS fits

I Other groups:
I Kumericki, Muller,
I Guidal, Vanderhaeghen, Dupre,
I Burkert, Elouadrhiri, Girod
I Liuti, Kriesten et al.

I Most fits still at LO and LT - effectively Compton Form Factors fits
I More channels needed:

I DVCS on neutron
I Timelike Compton Scattering (TCS)
I Double Deeply Virtual Compton Scattering (DDVCS)
I Deeply Virtual Meson Production
I Photoproduction of heavy mesons

I We need to go from x = ξ line - DDVCS
I higher twist needed, especially for JLab kinematics
I Switch from CFFs to GPDs - flexible modelling,
I NLO fits! (first attempts for low-x by Kumericki, Mueller, Lautenschlager)
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we can also study timelike DVCS

Berger, Diehl, Pire, 2002

N N’

qγ

GPD

e −

e+

( b )

Figure: Timelike Compton Scattering (TCS): γN → l+l−N ′

Why TCS:
I universality of the GPDs
I another source for GPDs (special sensitivity on real part of GPD H),
I spacelike-timelike crossing (different analytic structure - cut in Q2)
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Spacelike vs Timelike

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86, 2012.

Thanks to simple spacelike-to-timelike relations, we can express the timelike
CFFs by the spacelike ones in the following way:

TH LO
= SH∗ ,

T H̃ LO
= −SH̃∗ ,

TH NLO
= SH∗ − iπQ2 ∂

∂Q2

SH∗ ,

T H̃ NLO
= −SH̃∗ + iπQ2 ∂

∂Q2

SH̃∗ .

The corresponding relations exist for (anti-)symmetric CFFs E (Ẽ).
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DVCS vs TCS CFFs
O. Grocholski, H. Moutarde, B. Pire, P. Sznajder, J. Wagner, Eur.Phys.J. C80 (2020)
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Figure: Imaginary (left) and real (right) part of DVCS (up) and TCS (down) CFF for
Q2 = 2 GeV2 and t = −0.3 GeV2 as a function of ξ. The shaded red (dashed blue)
bands correspond to the data-driven predictions coming from the ANN global fit of
DVCS data and they are evaluated using LO (NLO) spacelike-to-timelike relations.
The dashed (solid) lines correspond to the GK GPD model evaluated with LO (NLO)
coefficient functions.
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Circular asymmetry
The photon beam circular polarization asymmetry:

ACU =
σ+ − σ−

σ+ + σ−
∼ Im(H)
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Figure: Circular asymmetry ACU evaluated with LO and NLO spacelike-to-timelike
relations for Q′2 = 4 GeV2, t = −0.1 GeV2 and (left) Eγ = 10 GeV as a function of φ
(right) and φ = π/2 as a function of ξ. The cross sections used to evaluate the
asymmetry are integrated over θ ∈ (π/4, 3π/4).
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Experimental status

I First measurement: P. Chatagnon et al. (CLAS), PRL 127, 262501 (2021)

I TCS has the same final state as J/ψ, already measured in UPCs! LHCb,
CMS, ALICE, AFTER

σAB =

∫
dkA

dnA

dkA
σγB(WA(kA)) +

∫
dkB

dnB

dkB
σγA(WB(kB))
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Double DVCS

Figure: Double Deeply Virtual Compton Scattering (DDVCS): γN → l+l−N ′

γ∗(qin)N(p)→ γ∗(qout)N
′(p′)

Variables, describing the processes of interest in this generalized Bjorken limit,
are the scaling variable ξ and skewness η > 0:

ξ = −q
2
out + q2in
q2out − q2in

η , η =
q2out − q2in

(p+ p′) · (qin + qout)
.

I DDVCS: q2in < 0 , q2out > 0 , η 6= ξ
I DVCS: q2in < 0 , q2out = 0 , η = ξ > 0
I TCS: q2in = 0 , q2out > 0 , η = −ξ > 0
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Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are
defined through relations:

Aµν(ξ, η, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµνT

(
H(ξ, η, t) γ+ + E(ξ, η, t)

iσ+ρ∆ρ

2M

)
+ iεµνT

(
H̃(ξ, η, t) γ+γ5 + Ẽ(ξ, η, t)

∆+γ5
2M

)]
u(P ) ,

,where:

H(ξ, η, t) = +

∫ 1

−1

dx

(∑
q

T q(x, ξ, η)Hq(x, η, t) + T g(x, ξ, η)Hg(x, η, t)

)

H̃(ξ, η, t) = −
∫ 1

−1

dx

(∑
q

T̃ q(x, ξ, η)H̃q(x, η, t) + T̃ g(x, ξ, η)H̃g(x, η, t)

)
.
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LO

I DVCS vs TCS

DVCST q = −e2q 1
x+η−iε − (x→ −x) = (TCST q)∗

DVCS T̃ q = −e2q 1
x+η−iε + (x→ −x) = −(TCS T̃ q)∗

DVCSRe(H) ∼ P
∫

1

x± ηH
q(x, η, t) , DVCSIm(H) ∼ iπHq(±η, η, t)

I DDVCS
DDVCST q = −e2q

1

x+ ξ − iε − (x→ −x)

DDVCSRe(H) ∼ P
∫

1

x± ξH
q(x, η, t) , DVCSIm(H) ∼ iπHq(±ξ, η, t)

DDVCS can provide unique information, but is very challenging experimentally.
But recent measurement of TCS should also make us more optimistic about
DDVCS!

We need muon detection!
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Other processes

I Hard photo- and electroproduction of a diphoton with a large invariant
mass

I Meson production - important, but not for today :)

N N’

q

e
e

GPD

π

DA

( c )
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Summary

I Fairly accurate descriptions of DVCS data exist:
I with parametrizations and neural networks,
I mostly on the LO+LT level, effectively Compton Form Factors fits
I extraction of GPDs from DVCS CFFs is model dependent

I Multi-channel analysis needed:
I Deeply Virtual Meson Production
I First data on Timelike Compton Scattering
I DVCS/TCS on neutrons planned/measured at JLAB
I Heavy Vector Mesons, specially sensitive to gluon GPDs.

I We have to get info about GPDs at x 6= ξ:
I Double DVCS - difficult experimentally, but provide unique information
I Lattice

I Need for open source tools
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