24–30 Sept 2022
Corigliano Calabro, Italy
Europe/Rome timezone

The ReBB model at 8 TeV: Odderon exchange is a certainty

29 Sept 2022, 14:30
20m
Corigliano Calabro, Italy

Corigliano Calabro, Italy

BV Airone Resort
Soft and low-mass diffraction Soft and low-mass diffraction

Speakers

Istvan Szanyi (Eötvös University, Wigner RCP, MATE KRC)Mr István Szanyi (Eötvös Loránd University)

Description

The Real Extended Bialas-Bzdak (ReBB) model is shown here to describe, in the $0.37 \le -t \le 1.2$ GeV$^2$ region, the proton-proton elastic differential cross section data published by the TOTEM Collaboration at LHC at $\sqrt{s} = 8 $ TeV center of mass energy. In this kinematic range, corresponding to the diffractive minimum-maximum region, a model-dependent Odderon signal higher than 18 $\sigma$ is obtained by comparing the ReBB model prediction for the $p\bar{p}$ elastic differential cross section to this TOTEM measured $pp$ elastic differential cross section data at 8 TeV. However, when combining this signal with the Odderon signals from the ReBB model in the $0.37 \leq -t \leq 1.2$ GeV$^2$ four-momentum-transfer range at $\sqrt{s} = $ 1.96, 2.76 and 7 TeV, it turns out that the combined significance is dominated not by the new 8 TeV but by that of earlier 7 TeV TOTEM data, that carry an even larger Odderon effect. Thus, in any practical terms, within the framework of the ReBB model, the Odderon signal in the limited $0.37 \leq -t \leq 1.2$ GeV$^2$ and $1.96 \leq \sqrt{s} \leq 8$ TeV kinematic region is not a probability, but a certainty. We show also that the $H(x)$ version of the ReBB model works reasonably well at 8 TeV in the $0.37 \le -t \le 0.97$ GeV$^2$ region.

Presentation materials