QCD AT A FORWARD PHYSICS FACILITY AT THE HIGH-LUMINOSITY LHC

<u>A. Di Crescenzo</u> CERN, Università Federico II and INFN

Diffraction and Low-x 2022 - Sept 25-30, 2022

MOTIVATION

- The existing large LHC detectors are beautifully designed to find strongly interacting heavy particle
- But they are also perfectly designed to not find weakly-interacting light particles
- These are dominantly produced in the rare decays of light particles: π , η , K, D and B mesons along the forward direction, and so the new particles escape through the blind spots down the beamline
- There are both SM and BSM motivations to explore these blind spots in the far forward region
- We cannot block the beams, but if we go far away, the proton beams are bent by magnets, whereas light, weakly-interacting particles go straight
- High energy neutrinos can be used as a probe of QCD in the forward region

Currently, FASERv and SND@LHC installed for Run3 based on this idea

TWO RECENTLY APPROVED EXPERIMENTS: SND@LHC and FASERv

- SND@LHC and FASER located in two symmetric locations: TI18 and TI12
- About 480 m away from the ATLAS IP
- TI18 and TI12 tunnels: former service tunnel connecting SPS to LEP
- Charged particles deflected by LHC magnets
- Shielding from the IP provided by 100 m rock
- ▶ Aim: collect more than 200 fb⁻¹ in LHC Run3 (2022-2025)

Complementarity:

- FASERv on axis: η > 8.8
- > SND@LHC off axis: $7.2 < \eta < 8.4$

THE FASERV CONCEPT

- Emulsion/tungsten detector, interface silicon tracker, and veto station placed in front of the FASER main detector
- Allow to distinguish all flavor of neutrino interactions
 - Muon identification by their track length in the detector (8λ)
 - Muon charge identification with hybrid configuration to distinguish u_{μ} and $\overline{
 u}_{\mu}$
 - Neutrino energy measurement with ANN by combining topological and kinematical variables

THE SND@LHC CONCEPT

Hybrid detector optimised for the identification of three neutrino flavours and for the detection of feebly interacting particles

VETO PLANE:

tag penetrating muons

TARGET REGION + ECAL:

- Emulsion cloud chambers (Emulsion+Tungsten) for neutrino interaction detection

- Scintillating fibers for timing information and energy measurement

MUON SYSTEM + HCAL:

iron walls interleaved with plastic scintillator planes for fast time resolution and energy measurement

VETO SYSTEM

trino interaction detection easurement

SND@LHC in the TI18 tunnel

EXPERIMENT DATA TAKING

FASER

Muon from ATLAS IP (April 2022)

SND@LHC

Muon from ATLAS IP (May 2022)

NEUTRINO PHYSICS PROGRAMME

- First detection of TeV neutrinos produced at colliders
- Neutrinos produced in the forward direction at the LHC originate from the decay of hadrons, mainly pions, kaons, and charm particles
- FASERv and SND@LHC measurements provide novel input to validate/improve generators
- First data on forward charm, hyperon, kaon

Complementarity

- SND@LHC: off axis location (7.2< η <8.4)
- FASERv: on axis (η >8.8)

 $\label{eq:spectrum}$ - Expected neutrino interactions in 150 fb^-1 \rightarrow More than 200 fb^-1 expected in Run3

Generators			$FASER\nu$	SND@LHC			
ight hadrons	heavy hadrons	$ u_e + ar{ u}_e$	$ u_{\mu}+ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$	$ u_e + ar{ u}_e $	$ u_{\mu}+ar{ u}_{\mu}$	$ u_{ au} +$
SIBYLL	SIBYLL	901	4783	14.7	134	790	7.6
DPMJET	DPMJET	3457	7088	97	395	1034	18.
EPOSLHC	Pythia8 (Hard)	1513	5905	34.2	267	1123	11.
QGSJET	Pythia8 (Soft)	970	5351	16.1	185	1015	7.2
Combination (all)		1710^{+1746}_{-809}	5782^{+1306}_{-998}	$40.5^{+56.6}_{-25.8}$	245^{+149}_{-111}	991^{+132}_{-200}	11.3^{+}_{-}
Combination (w/o DPMJET)		1128^{+385}_{-227}	5346^{+558}_{-563}	$21.6^{+12.5}_{-6.9}$	195^{+71}_{-61}	976^{+146}_{-185}	8.8^{+}_{-}

[Phys. Rev. D 104, 113008, arXiv:2105.08270]

FORWARD PHYSICS FACILITY

- FASER, FASERv, and SND@LHC are currently highly constrained by 1980's (LEP!) infrastructure that was never intended to support experiments
- The rich physics program in the far-forward region therefore strongly motivates creating a dedicated **Forward Physics Facility** to house far forward experiments for the HL-LHC era from 2029-2040

[https://pbc.web.cern.ch/fpf-resources]

• FPF Meetings

- FPF Kickoff Meeting, 9-10 Nov 2020, https://indico.cern.ch/event/955956 - FPF2 Meeting, 27-28 May 2021, https://indico.cern.ch/event/1022352 - FPF3 Meeting, 25-26 Oct 2021, https://indico.cern.ch/event/1076733 - FPF4 Meeting, 31 Jan-1 Feb 2022, https://indico.cern.ch/event/1110746

- FPF Short Paper: 75 pages, 80 authors completed in Sep 2021 (2109.10905, Physics Reports 968, 1 (2022))
- FPF Snowmass White Paper: Feng, Kling, Reno, Rojo, Soldin et al. A comprehensive, 429-page, 392author+endorser summary (2203.05090)

LOCATION, TIMELINE, COST

- ► 620-680 m west of the ATLAS IP
- Shielded by ~200 m of rock
- Cavern: 65m long, 8m wide/high
- Shaft: 88m-deep, 9.1m-diameter
- Surface Buildings

Construction end of this decade Operation in the 2030s

Very preliminary (class 4) cost estimate:

▶ 23 MCHF (CE) + 15 MCHF (services) \approx 40 MCHF (+50%/-30%), not including experiments

CE works Services Experiments installation installation

DESIGN STUDIES

- The FPF is completely decoupled from the LHC: no need for a safety corridor connecting the FPF to the LHC
- Preliminary RP and vibration studies indicate that FPF construction will have no significant impact on LHC operation
- RP study suggests access to the FPF cavern possible during HL-LHC operations
- FLUKA studies of expected muon rate at FPF of ~1.5Hz/cm² at HL-LHC (L=5e34) close to LOS FLUKA agrees well with observed rate at FASER and SND@LHC
- Studies ongoing to see if the background rate can be reduced with a sweeper magnet

EXPERIMENTS

The FPF would house a suite of experiments that will greatly enhance the LHC's physics potential for **BSM physics searches** and **neutrino physics** and **QCD**

neutrino detector

NEUTRINO DETECTORS AT FPF

Followed downstream by FASER spectrometer

AdvSND-Far (7.2<η<8.5)

Electronic detector and magnetic spectrometer Associated to AdvSND-Near at $\eta \sim 5$

FLArE (η>8.5) LAr TPC neutrino detector Target mass: 10 tons

QCD IN pp AND vA COLLISIONS

QCD IN pp AND vA COLLISIONS

QCD IN pp AND vA COLLISIONS

NEUTRINOS FLUXES AT THE DETECTOR

- Fluxes in forward region evaluated with several MC generators of hadronic interactions for cosmic rays and forward physics + Pythia 8.2 Monash
- Kaons dominate lower energy $\nu_e + \overline{\nu}_e$
- Pions dominate lower energy $\nu_{\mu} + \overline{\nu}_{\mu}$
- High energy neutrino fluxes from charm perturbative QCD
- $\nu_{\tau} + \overline{\nu}_{\tau}$ all from charm

NEUTRINOS FLUXES AND RATES

• Event rates at LHC neutrino experiments estimated with two LO MC generators: SIBYLL / DPMJET

	Detector			Number of CC Interactions			
	Name	Mass	Coverage	$\nu_e + \bar{\nu}_e$	$ u_{\mu}\!+\!ar{ u}_{\mu}$	$\nu_{ au} + ar{ u}_{ au}$	
LHC Run3	$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	1.3k / 4.6k	6.1k / 9.1k	21 / 131	
	SND@LHC	800kg	$7 < \eta < 8.5$	180 / 500	1k / 1.3k	10 / 22	
	$FASER\nu 2$	20 tons	$\eta\gtrsim 8$	178k / 668k	943k / 1.4M	2.3k / 20k	
HL-LHC	FLArE	10 tons	$\eta\gtrsim7.5$	36k / 113k	203k / 268k	1.5k / 4k	
	AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	6.5k / 20k	41k / 53k	190 / 754	

- Large spread in current generator predictions:
 - Challenge: for neutrino physics measurement we need to quantify and reduce neutrino flux uncertainties
 - <u>Opportunity</u>: forward neutrino flux measurement can help to improve our understanding of underlying physics

CHARM PRODUCTION

• Forward neutrino η_{ν} is correlated to charmed hadron η_c

- Many opportunities:
 - PDFs, small x and large x
 - PDFs, intrinsic charm
 - Treatment of heavy flavour
 - Fragmentation, spectator effects, forward baryon production
 - Higher order effects, intrinsic k_T
 - Particle/antiparticle asymmetries

[Short white paper 2109.10905]

QCD USING LHC NEUTRINOS

• Forward charm: high rapidity, $x_1 >> x_2$ in gluon PDF

- Small-x reggono for PDFs
 - PDF fits and uncertainties
 - Iarge In(1/x) and resummation
 - collinear and kT factorization approaches
 - small-x gluon saturation

CONCLUSIONS

- Forward Physics Facility a relatively low cost facility and experiments can leverage the HL-LHC interactions to do interesting physics to better understand the fundamental physics of elementary particles, and perhaps, discover new particles and forces
- FASER and SND@LHC just started to take data in LHC's forward direction
- The FPF is proposed to continue this program during the HL LHC era
- Significant extension of the LHC's physics program

Thanks to the CERN Physics Beyond Colliders group for technical studies on the FPF design/feasibility

BACKUP SLIDES

THE SND@LHC DETECTOR LAYOUT

- Angular acceptance: 7.2< η < 8.4
- Target material: Tungsten
- Target mass: 830 kg
- Surface: 390x390 mm²

FASERV INSTALLATION IN TI12

FASER spectrometer with 0.55T magnets

Calorimeter

ν

SND@LHC INSTALLATION IN TI18

Detector commissioning on surface (North Area @CERN) in September and October 2021 Installation in TI18 started on November 1st 2021

Electronic detector installation completed on December 3rd 2021 Installation of the neutron shield completed on March 15th 2022 Installation of the first emulsion wall on April 7th 2022

FIRST NEUTRINO INTERACTION CANDIDATES AT THE LHC [Phys. Rev. D 104, L091101]

2018 FASERv Pilot run

- Analyzed target mass of 11 kg and luminosity of 12.2 fb⁻¹
- ▶18 neutral vertices selected
- By applying topological cuts
- Expected signal 3.3^{+1.7}-0.9 events, background
- 11.0 events
- •no lepton ID in the pilot detector, high BG
- In the BDT analysis, excess of neutrino signal observed
- Statistical significance 2.7 σ from null hypothesis
- This result demonstrates detection of neutrinos at the LHC

Best fit (no N_{BG} constraint)

FASERV PHYSICS PROGRAMME

- Neutrino cross-section measurement of three flavors at TeV energies
- Neutrino CC interactions with charm production ($\nu s \rightarrow lc$):
 - study strange quark content
 - probe inconsistency between predictions and LHC data
- Neutrino NC measurements could constraint non-standard interactions
- High energy electron neutrinos (E>500 GeV) mainly produced in charmed hadron decays:

Electron neutrino in FASERv

SND@LHC PHYSICS PROGRAMME

- Study neutrino of different flavors at TeV energies
- Electron neutrinos mostly produced by charm decays
- ν_e ca be used as a probe of **charm production** in a region where charm yield has large uncertainties
- Measure the charmed hadron yield in an unexplored pseudorapidity range:
 - extraction of gluon PDF in very small x-region
- Test lepton flavor universality measuring ν_e/ν_{τ} and ν_e/ν_{μ} ratios

			ef)
Measurement	Uncer	tainty	$d\sigma/d\eta_{\rm r}$
	Stat.	Sys.)/((hb/
$pp \rightarrow \nu_e X$ cross-section	5%	15%	$(q \sigma)$
Charmed hadron yield	5%	35%	
ν_e/ν_{τ} ratio for LFU test	30%	22%	
ν_e/ν_μ ratio for LFU test	10%	10%	

Ratio between the cross-section measurements at different pseudorapidities, normalised to LHCb measurements

$$R = \frac{d\sigma/d\eta(13 \, TeV)}{d\sigma/d\eta_{ref}(7 \, TeV)}$$
$$\eta_{ref} = [4, -1]$$

arxiv:1510.01707

,4.5]

SND@LHC INSTALLATION IN TI18

FASERV PREPARATION FOR RUN3

