# Odderon observation: an update with answers to questions & objections



K. Österberg,
Department of Physics & Helsinki
Institute of Physics, University of Helsinki



on behalf the **D0 & TOTEM** collaborations



HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

**Diffraction and Low-x 2022 29.9.2022** 

References: D0 & TOTEM collaborations, PRL 127 (2021) 062003; K. Österberg on behalf of D0 & TOTEM collaborations, ArXiv: 2202.03724

#### Phenomenological studies:

- E. Martynov & B. Nicolescu, PLB 778 (2018) 414
- . V. A. Khoze, A.D. Martin & M.G. Ryskin, PRD 97 (2018) 034019
- E. Martynov & B. Nicolescu, EPJC 79 (2019) 461
- T. Csorgo et al., EPJC 81 (2021) 180
- T. Csorgo & I. Szanyi, EPJC 81 (2021) 611
- . I. Szanyi & T. Csorgo, EPJC 82 (2022) 827



## Comparison of $pp \& p\overline{p}$ cross section



Extrapolation of TOTEM  $pp\ d\sigma_{el}/dt$  at  $\sqrt{s}$  = 2.76, 7, 8 and 13 TeV in dipbump region to  $\sqrt{s}$  = 1.96 TeV for direct comparison with D0  $p\bar{p}\ d\sigma_{el}/dt$ 



 $pp \& p\bar{p} d\sigma_{el}/dt$ differ by 3.4 $\sigma$  at  $\sqrt{s}$ = 1.96 TeV  $\Longrightarrow$ evidence of
odderon (C-odd
gluonic compound)
exchange in TeV
energy range
(secondary Reggeons
negligible)



### $d\sigma_{el}/dt$ measurements in $pp/p\overline{p}$



DØ, 31 nb<sup>-1</sup>

Islam et al.





 $D0 p\bar{p}$ 



- Diffractive minimum ("dip") & secondary maximum ("bump") clearly observable in pp (contrary to  $p\bar{p}$ )
- $pp d\sigma_{el}/dt$  in dip-bump region well described by  $h(t)=a_1e^{-a_2|t|^2-a_3|t|}+a_4e^{-a_5|t|^3-a_6|t|^2-a_7|t|}$

1.2

Itl(GeV<sup>2</sup>)



#### Ratio of bump & dip cross sections



$$R \equiv d\sigma/dt_{\text{bump}}/d\sigma/dt_{\text{dip}}$$



 $> 3\sigma$  difference between  $pp \& p\bar{p}$ @  $\sqrt{s} = 1.96$  TeV (assuming flat behaviour above  $\sqrt{s} \sim 100$  GeV)

For  $p\bar{p}$  R estimate, use t-bins close to expected pp bump & dip position



 $(\mathrm{GeV}^2)$ 

1

#### **Data-driven estimates**



- Short ( $\sim$ 8 % of fit range) extrapolation of the 8 characteristic  $pp \ d\sigma_{el}/dt$  points to  $\sqrt{s}$  = 1.96 TeV
- Interpolation of 1.96 TeV characteristic pp $d\sigma_{el}/dt$  points to D0  $p\bar{p}$   $d\sigma_{el}/dt$  |t| values using  $h(t) = a_1 e^{-a_2|t|^2 - a_3|t|} + a_4 e^{-a_5|t|^3 - a_6|t|^2 - a_7|t|}$
- 3-4 data points limit to 2 parameter formulas.
- All characteristic points give excellent fits.
- Alternate functional forms (having other  $\sqrt{s}$ powers) give results well within fit uncertainties.







## Cross check of $\sigma_{tot}^{pp}$ extrapolation



 $\sigma_{tot}^{pp}$  at  $\sqrt{s}$  = 1.96 TeV extrapolated from TOTEM  $\sigma_{tot}^{pp}$  at  $\sqrt{s}$  = 2.76, 7, 8 and 13 TeV using formula:  $\sigma_{tot} = a \log^2 \sqrt{s}$  ([TeV]) +b



$$\sigma_{tot}^{pp}(\sqrt{s} = 1.96 \text{ TeV})$$
  
= 82.7 ± 3.7 mb

- Short ( $\sim$ 8 % of fit range) extrapolation of  $\sigma_{tot}^{pp}$  to  $\sqrt{s}$  = 1.96 TeV
- Starting from 4 data points limits to 2-3 parameter formulas.
- $\sim$  2 TeV in boundary between  $\log^2 \sqrt{s}$  &  $\log \sqrt{s}$  dependence dominated region.
- Also tried  $a\log^2 x + b\log x + c$ ;  $ax^2 + bx + c$  and  $a\sqrt{x} + b$ , where  $x = \sqrt{s}$ . All alternative extrapolations fall well within estimated uncertainty of extrapolated  $\sigma_{tot}^{pp}$  at  $\sqrt{s} = 1.96$  TeV using baseline function.



## $pp \& p\overline{p}$ OP matching at $\sqrt{s} = 1.96$ TeV



- . Pomeranchuk theorem:  $\sigma^{pp}_{tot}/\sigma^{p\bar{p}}_{tot} \xrightarrow{\sqrt{s} \to \infty} 1 \Longrightarrow$  Optical points (OP):  $d\sigma^{pp}_{el}/dt\big|_{t=0}/d\sigma^{p\bar{p}}_{el}/dt\big|_{t=0} \xrightarrow{\sqrt{s} \to \infty} 1$
- $d\sigma_{el}^{pp}/dt\big|_{t=0} = 357 \pm 26 \text{ mb/GeV}^2 \text{ (from } \sigma_{tot}^{pp}\text{)}$
- $d\sigma_{el}^{p\bar{p}}/dt\big|_{t=0}$  = 341 ± 49 mb/GeV² (from extrapolation of D0 data)
- Assume pp OP =  $p\bar{p}$  OP (experimentally true within uncertainties), valid as long as maximal possible C-odd ("maximal odderon model"), secondary Reggeon effects & pp &  $p\bar{p}$   $\rho$  differences included as systematics (2.9 %).
- $\sigma(par{p}$  OP) neglected since  $\sigma(pp$  OP) dominate precision, cf. weighted average
- Scale  $d\sigma_{el}^{pp}/dt$  to match  $d\sigma_{el}^{p\bar{p}}/dt$  with an overall 7.4 % relative uncertainty due to  $\sigma_{tot}^{pp}$  uncertainty and uncertainties due to pp OP =  $p\bar{p}$  OP assumption



## $\chi^2$ for $pp \& p\overline{p}$ comparison



As a result of interpolation, extrapolated  $pp\ d\sigma_{el}/dt$  values at neighbouring D0 |t|-values strongly correlated  $\Longrightarrow$  full covariance matrix (with vital diagonal protection) included in  $\chi^2$  for  $pp\ \&\ p\bar{p}$  comparison

$$\chi^{2} = \sum_{\text{points } i,j} \left\{ \left( \frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left( \frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$

where  $C_{i,j}$  covariance matrix and A & B two contraints  $\implies$  8 points, 6 d.o.f.

- $A = \text{normalization } OP(pp) = OP(p\bar{p})$
- $\sim B = \text{elastic slope } B(pp) = B(pp)$  (experimentally true within uncertainties)

Cornille-Martin theorem: 
$$\sigma_{el}^{pp}/\sigma_{el}^{p\bar{p}} \xrightarrow{\sqrt{S} \to \infty} 1 \& \frac{d\sigma_{el}^{pp/pp}}{dt} \propto e^{-Bt}$$
 (diffr. cone)  $\Longrightarrow$ 

B(pp) =  $B(p\bar{p})$ , since pp &  $p\bar{p}$  differences in CNI & high |t| negligible for  $\sigma_{el}^{pp/p\bar{p}}$ 



## $\chi^2$ for $pp \& p\overline{p}$ comparison



As a result of interpolation, extrapolated  $pp d\sigma_{el}/dt$  values at neighbouring D0 |t|-values strongly correlated  $\Rightarrow$  full covariance matrix (with vital diagonal protection) included in  $\chi^2$  for  $pp \& p\bar{p}$  comparison

$$\chi^{2} = \sum_{\text{points } i,j} \left\{ \left( \frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left( \frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \underbrace{\frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}}_{\approx 0}$$
where  $C_{i,j}$  covariance matrix and  $A \& B$  two contraints  $\implies$  8 points, 6 d.o.f.

- $A = \text{normalization} OP(pp) = OP(p\bar{p})$
- $\sim B = \text{elastic slope}(B(pp) = B(p\bar{p}))$  (experimentally true within uncertainties)

Cornille-Martin theorem: 
$$\sigma_{el}^{pp}/\sigma_{el}^{p\bar{p}} \xrightarrow[\sqrt{s} \to \infty]{} 1 \& \frac{d\sigma_{el}^{pp/p\bar{p}}}{dt} \propto e^{-Bt}$$
 (diffr. cone)  $\Longrightarrow$ 

 $B(pp) = B(p\bar{p})$ /since  $pp \& p\bar{p}$  differences in CNI & high |t| negligible for  $\sigma_{el}^{pp/p\bar{p}}$ 

- a) D0 & TOTEM covariance matrices diagonalized separately
- b) first term of  $\chi^2$  estimated using the sum of the two diagonalized matrices

$$\chi^2=23.64$$
 (d.o.f. = 6)  $\Longrightarrow pp \ \& \ p\bar{p} \ d\sigma_{el}/dt$  differ by 3.4 $\sigma$  at  $\sqrt{s}$  = 1.96 TeV



## Updated $\chi^2$ for $pp \& p\overline{p}$ comparison



TOTEM-D0 preparing a longer (more detailed) paper that also will include an updated version of the  $pp \ \& p\bar{p}$  comparison at  $\sqrt{s} = 1.96$  TeV

- $\checkmark$  Improved TOTEM pp covariance matrix (with refined diagonal protection)
- $\checkmark$  MC method for combining the diagonal D0  $p\bar{p}$  covariance matrix (Gaussian) with the non-diagonal TOTEM pp covariance matrix (Cholesky)
- Explicit affine transformation assuring  $pp \& p\bar{p}$  equality of elastic slope B & integrated cross section of examined range A in  $\chi^2$  calculation

$$\chi^{2} = \sum_{\text{points } i,j} \left\{ \left( \frac{d\sigma_{el,i}^{pp}}{dt} - \frac{d\sigma_{el,i}^{p\bar{p}}}{dt} \right) C_{i,j}^{-1} \left( \frac{d\sigma_{el,j}^{pp}}{dt} - \frac{d\sigma_{el,j}^{p\bar{p}}}{dt} \right) \right\} + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$
Preliminary

Preliminary

 $\Rightarrow$  ~0.2 $\sigma$  increase of significance in  $pp \& p\bar{p}$  comparison at  $\sqrt{s}$  = 1.96 TeV

Significance confirmed with a MC based Kolmogorov-Smirnov test, including data point correlations, combined with normalisation using Stouffer method

More improvements of the  $pp \& p\bar{p}$  comparison at  $\sqrt{s}$  = 1.96 TeV to come!



## **TOTEM** $\rho$ in pp at $\sqrt{s}$ = 13 TeV



- @  $\sqrt{s}$  = 13 TeV:  $\rho^{pp}$  = 0.10  $\pm$  0.01 / 0.09  $\pm$  0.01 (TOTEM, EPJC 79 (2019) 785)
- Models (COMPETE, Durham, Block-Halzen) unable to describe TOTEM  $\rho$  &  $\sigma_{tot}^{pp}$  measurements at 3.4-4.6 $\sigma$  level without adding odderon exchange



ATLAS recently confirmed:  $\rho^{pp}$  @ 13 TeV= 0.098  $\pm$  0.011 (arXiv:2207.12246) (however TOTEM & ATLAS  $\sigma^{pp}_{tot}$  differs by ~2.2 $\sigma$ )



## **TOTEM** $\rho$ in pp at $\sqrt{s}$ = 13 TeV



- Another explanation for low  $ho^{pp}$ : slower rise of  $\sigma^{pp}_{tot}$  (тотем, ерус 79 (2019) 785)
- NB!  $\rho^{pp} = 0.09 \pm 0.01$  @  $\sqrt{s} = 13$  TeV should be compared with  $\rho^{p\bar{p}} = 0.135 \pm 0.015$  @  $\sqrt{s} = 541$  GeV (UA4/2, PLB 316 (1993) 448) (same receipe: hadronic amplitude functional form, CNI formula, |t|-range ...)



• All (A. Donnachie & P. Landshoff, J.R. Cudell & O.V. Selyugin, P. Grafström...) that have taken the 13 TeV TOTEM or ATLAS  $\beta^*$ = 2.5 km data as they are given and extracted  $\rho$  using similar CNI formula obtain compatible  $\rho$  values (0.08-0.10)



#### TOTEM & ATLAS $\sigma_{tot}$ comparison



- 13 TeV TOTEM  $\sigma_{\text{tot}}^{\text{pp}}$  = 110.5  $\pm$  2.4 mb direct counting experiment
- $\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$
- . 13 TeV ATLAS  $\sigma_{\text{tot}}^{pp}$  = 104.7  $\pm$  1.1 mb 13 IEV AILAS  $\sigma_{\rm tot}^{rr}$  = 104.7  $\pm$  1.1 mb need precise (2.15 %) luminosity determination  $\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$

essentially mainly a normalisation difference!

difference from non-measured low mass diffraction in  $N_{\text{inel}}$ 

(P. Grafström, ArXiv: 2209.01058)

13 TeV TOTEM correction: 5.3  $\pm$  2.6 mb  $\rightarrow$  8.2  $\pm$  1.4 mb  $\Rightarrow$  significantly smaller  $\sigma^{pp}_{tot}$  difference in mb but only slightly in terms of  $\sigma'$ s

To explain most of difference would result in a TOTEM low mass diffraction incompatible with estimated ATLAS low mass diffraction (=  $\sigma_{tot} - \sigma_{inel}$ )!

#### Questions to ATLAS:

- How reliable is an absolute luminosity calibration made in van de Meer scans at  $\beta^*$  = 11 m for luminosity of beams at  $\beta^*$  = 2500 m (collision vertex size x 15)?
- $\checkmark$  Coulomb-normalized  $\sigma_{tot}$  increase with inclusion of lowest |t| bins (+ $\sim$ 2.2 mb)?



#### **Statements of PDG review**



V.A. Khoze, M.G. Ryskin & M. Tasevsky, High energy Soft QCD and Diffraction, <a href="https://pdg.lbl.gov/">https://pdg.lbl.gov/</a>

- Reasonable description of elastic  $pp \& par{p}$  data obtained with Pomeron only
- Durham model without odderon (V. A. Khoze, A.D. Martin and M.G. Ryskin, PLB 748 (2018) 192) fails to describe D0 1.96 TeV  $p\bar{p} d\sigma_{el}/dt$  in dip-bump region (4.3 $\sigma$ ).
- TOTEM data described within  $1\sigma \& \rho = 0.14$  obtained in pp at 13 TeV without odderon (A. Donnachie & P.V. Landshoff, PLB 798 (2019) 135008 & PLB 831 (2022)137199)
- Using TOTEM 13 TeV  $\beta^*$ = 2.5 km data only:  $\rho$  = 0.10
- Using TOTEM 8 TeV  $\beta^*$  = 1 km & 13 TeV  $\beta^*$  = 2.5 km data:  $\rho$  = 0.14
- ✓ Ignores Coulomb-hadronic interference term ( $\Delta \rho$  = -0.02)
- Sensitivity to  $\rho$  only in a few data points in CNI region. Fits should be made in several steps (hadronic amplitude, Coulomb amplitude &  $\rho$ ) in separate |t|-regions to avoid that data points without  $\rho$  sensitivity influence obtained  $\rho$ .
- $\checkmark$  Adding TOTEM 8 TeV  $\beta^*$ = 1 km with limited  $\rho$  sensitivity can't change  $\rho$  value.
- TOTEM 13 TeV  $\rho$  &  $\sigma_{tot}$  described by COMPETE RR(PL2)<sup>qc</sup> model without odderon (*J.R. Cudell & O. Selyugin, ArXiv:1901.05863*)
- Agreement obtained modifying TOTEM 13 TeV data normalisation by  $\geq 2\sigma$  (highly unlikely given two independent  $\sigma_{tot}^{pp}$  measurement at  $\sqrt{s}$  = 13 TeV)



#### **Objections on CNI formula used**



V.A. Petrov, EPJC 78 (2018) 221 & 414 & ArXiv:2001.06220

- Alleged flaws (inexact approximation of Coulomb amplitude & early truncation of series in powers of  $\alpha(s)$ ) of the CNI formula used in works of Cahn and Kundrat & Locajicek (KL)
- Numerical calculation of Coulomb & nuclear eikonals to all orders (*J. Kaspar, Acta Phys. Pol. B 52 (2021) 85*) show Cahn/KL formula to reproduce numerical estimate at  $\mathcal{O}(10^{-4})$ . Approximations by Cahn/KL do not have any detrimental effect on  $\rho$  determination. New CNI formula from Petrov & trivial sum of Coulomb+nuclear amplitudes(\*) fails.



- ✓ Effect of N\*'s omitted by eikonal negligible (V.A. Khoze et al., PRD 101(2020) 016018).
- **Conclusion:** Cahn/KL CNI formulas used for 13 TeV ho determination prefectly fine.



## Combine $pp/p\overline{p}$ comparison & $pp \rho + \sigma_{tot}$

using Stouffer method (S. Bityukov et al., Proc. Sci. ACATO8 (2009) 18).







- Excluded at **4.6** $\sigma$  level with  $\rho(13 \ TeV) = 0.09$
- Excluded at  $5.7\sigma$  level when combining significance from ho and from difference in pp and  $par{p}$   $\frac{d\sigma}{dt}$ .
- Excluded at **4.0** $\sigma$  level with TOTEM  $\rho + \sigma_{tot}$  data.
- Excluded at  $5.3\sigma$  level when combining significance from TOTEM  $\rho + \sigma_{tot}$  data and from difference in pp and  $p\bar{p} \frac{d\sigma}{dt}$ .
- Excluded at **4.6** $\sigma$  level with TOTEM  $\rho + \sigma_{tot}$  data.
- Excluded at  $5.7\sigma$  level when combining significance from TOTEM  $\rho + \sigma_{tot}$  data and from difference in pp and  $p\bar{p} \frac{d\sigma}{dt}$ .

#### Durham Model: PLB 748 (2018) 192

- Excluded at **3.4** $\sigma$  level with TOTEM  $\rho + \sigma_{tot}$  data.
- Excluded at  $\mathbf{5.2}\sigma$  level when combining significance from TOTEM  $\rho + \sigma_{tot}$  data and from Durham prediction for D0  $p\bar{p} \frac{d\sigma}{dt}$ .

#### Block-Halzen Model: PRD 92 (2015) 114021

- Excluded at **3.9** $\sigma$  level with TOTEM  $\rho$  data.
- Excluded at  $\mathbf{5.2}\sigma$  level when combining significance from TOTEM  $\rho$  data and and from difference in pp and  $p\bar{p}$   $\frac{d\sigma}{dt}$ .



#### **Conclusions**



- Issues & objections raised regarding D0-TOTEM  $p\bar{p}$  & pp elastic  $d\sigma/dt$  comparison at  $\sqrt{s}$  = 1.96 TeV as well as TOTEM 13 TeV  $\rho$  & total cross section measurements addressed
- updated  $p\bar{p}$  & pp elastic  $d\sigma/dt$  comparison at  $\sqrt{s}$  = 1.96 TeV show an increased significance of  $\sim$ 0.2 $\sigma$  for odderon
- Tension between TOTEM & ATLAS total cross section @  $\sqrt{s}$  = 13 TeV
- "In a recent article in *Physical Review Letters* the CERN TOTEM and the Fermilab DØ collaborations reported the discovery of the odderon. This result is based mainly on an almost model-independent extrapolation down in the energy of the pp differential cross-sections measured at the LHC and a comparison with the  $p\bar{p}$  differential cross-section measured at the Tevatron. The significant difference in the shape of differential cross-sections at this ultra-high energy is at last convincing evidence for the existence of the odderon."





# Backup



#### Elastic pp differential cross-section





sensitive to *C*-odd exchange?

TOTEM



### $d\sigma_{el}/dt\,par{p}$ D0-Durham comparison





Motivation: Durham model prediction (without odderon) tuned to TOTEM pp data and will therefore have to compromise its description of  $p\bar{p}$ .



# $\sigma_{tot}$ , $\sigma_{inel}$ & $\sigma_{el}$ vs $\sqrt{s}$







# TOTEM $d\sigma_{el}/dt$ @ $\sqrt{s}$ = 13 TeV







## TOTEM CNI fit @ $\sqrt{s}$ = 13 TeV





Coulomb sizeble (on top of CNI+HA)

Fit goes right through the lowest |t| points that are most sensitive to combined Coulomb + Coulomb-hadronic interference + hadronic amplitude



## ATLAS CNI fit @ $\sqrt{s}$ = 13 TeV





Fit undershoot the lowest |t| points that are most sensitive to combined Coulomb + Coulomb-hadronic interference + hadronic amplitude