Model independent Odderon results

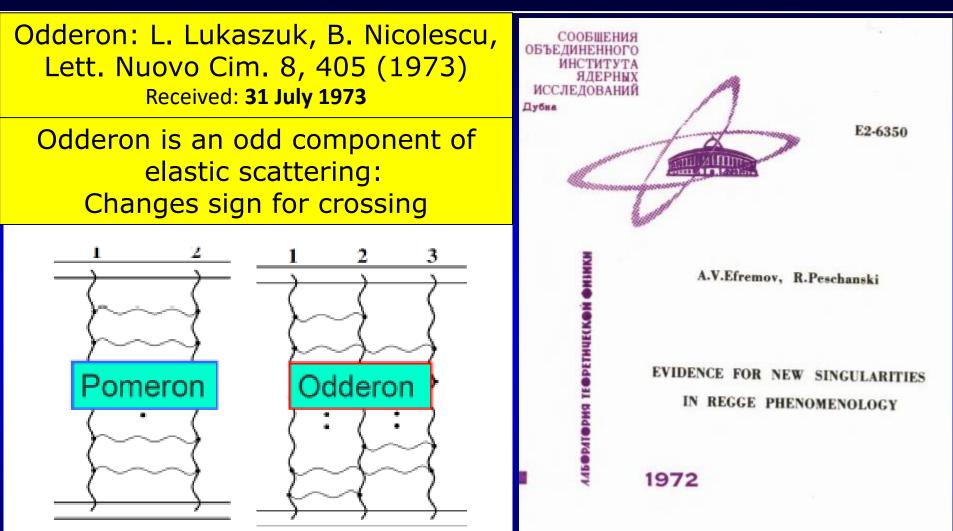
based on new TOTEM data at 8 TeV

T. Csörgő^{1,2} T. Novák², R. Pasechnik³, A. Ster¹, I. Szanyi^{1,2,4}

¹ Wigner RCP, Budapest, Hungary
 ² MATE KRC, Gyöngyös, Hungary
 ³ University of Lund, Lund, Sweden
 ⁴ Eötvös University, Budapest, Hungary

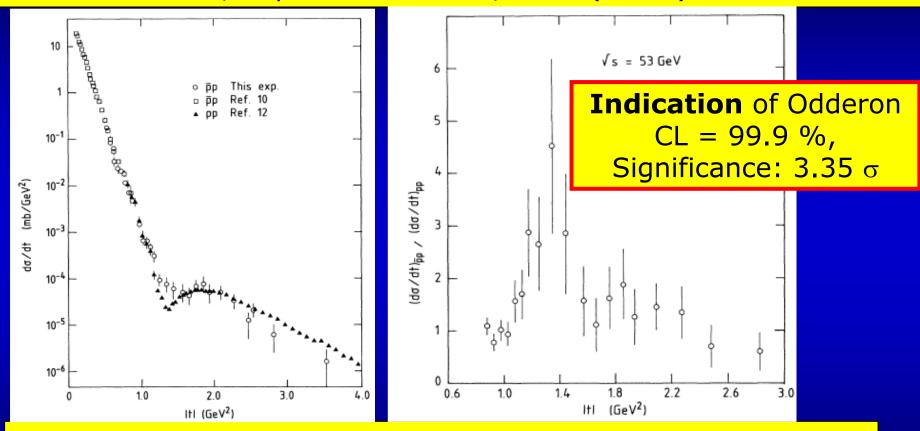
Statistically Significant Observations of Odderon in 2021

Hungarian-Swedish Odderon: Significance ≥ 6.26 σ Hungarian-Polish Odderon: Significance ≥ 7.08 σ D0-TOTEM Odderon: Significance ≥ 5.2 σ New in 2022: TOTEM data at 8 TeV published



Hungarian-Polish Odderon: a certainty Hungarian-Swedish Odderon: confirmed New relation between R and ρ

Supported by NKFIH: K 74458, Hungary


Odderon: 48 years old scientific puzzle

Odderon name coined: D. Joynson, E. Leader, <u>B. Nicolescu</u>, C. Lopez, Nuovo Cim. 30A, 345 (1975) - Well established in QCD by now ! Honorable mention: A. V. Efremov, R. Peschanski, JINR-E2-6350 (1972)

Odderon: elusive experimentally

Odderon search at ISR: indication but no conclusive result Breakstone et al, Phys. Rev. Lett. 54, 2180 (**1985**): CL = 99.9 %

Terminology for **this** talk: **Agreement** if statistical significance is < 3 σ **Indication of signal** if 3 $\sigma \leq$ significance < 5 σ **Evidence or observation** of signal if 5 $\sigma \leq$ significance **Discovery** of signal if 5 $\sigma \leq$ significance **for the first time**.

2021 observations of Odderon with > 5 σ

Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies #5						
T. Csörgő (Wigner RCP, Budapest and CERN), <u>T. Novak</u> (Unlisted, HU), R. Pasechnik (Lund U., Dept. Theor. Phys.), <u>A. Ster</u> (Wigner RCP, Budapest), <u>I. Szanyi</u> (Wigner RCP, Budapest) (Dec 26, 2019)						
Published in: Eur.Phys.J.C 81 (2021) 2, 180 • e-Print: 1912.11968 [hep.ph]						
Online attention	Hungarian-Swedish Odderon: Eur. Phys. J. C (2021) 81 : 180, Published: 23 February 2021					
 26 tweeters 26 tweeters 4 blogs 2 Facebook pages 2 Facebook pages 3 Mendeley 	https://doi.org/10.1140/epjc/s10052-021-08867-6					
This article is in the 98 th percentile (ranked 6,037 th) of the 428,075 tracked articles of a similar age in and the 99 th percentile (ranked 1 st) of the 231 tracked articles of a similar age in <i>The European Physical Journal C</i> #2 anyi (Eotvos U. and Wigner RCP, Budapest) (May 28, 2020)						
Published in: Eur.Phys.J.C 81 (2021) 7, 611 • e-Print: 2005.143	19 [hep-ph]					
Online attention Image: Contract of the second strength of the second strengt ot the second						
Odderon Exchange from Elastic Scattering Differences between pr Image: Control of the second price o						
Published in: Phys.Rev.Lett. 127 (2021) 6, 062003 • e-Print: 20 D0-TOTEM Odderon:						
] pdf @ links @ DOI ⊡ cite	Phys. Rev. Lett. 127 (2021) 6, 062003, Published: 4 August 2021 https://doi.org/10.1103/PhysRevLett.127.062003					

2022 observations of Odderon with > 5 σ

Characterisation of the dip-bump structure observed in proton–proton elastic scattering at $\sqrt{s} = \frac{\#1}{8}$ TeV

TOTEM Collaboration • G. Antchev (Pilsen U.) et al. (Nov 23, 2021)

Published in: Eur.Phys.J.C 82 (2022) 3, 263 • e-Print: 2111.11991 [hep-ex]

Online attention

This article is in the 1st percentile (ranked 279,419th) of the 343,918 tracked articles of a similar age in all journals and the 1st percentile (ranked 73rd) of the 114 tracked articles of a similar age in *The European Physical Journal C*

8 TeV: EPJ C (2022) 82, 263 (2022).<u>Published: March 26, 2022</u> <u>https://doi.org/10.1140/epjc/s10052-022-10065-x</u> Publishes final data for D0-TOTEM PRL published in 2021

The ReBB model and its H(x) scaling version at 8 TeV: Odderon exchange is a certainty

#1

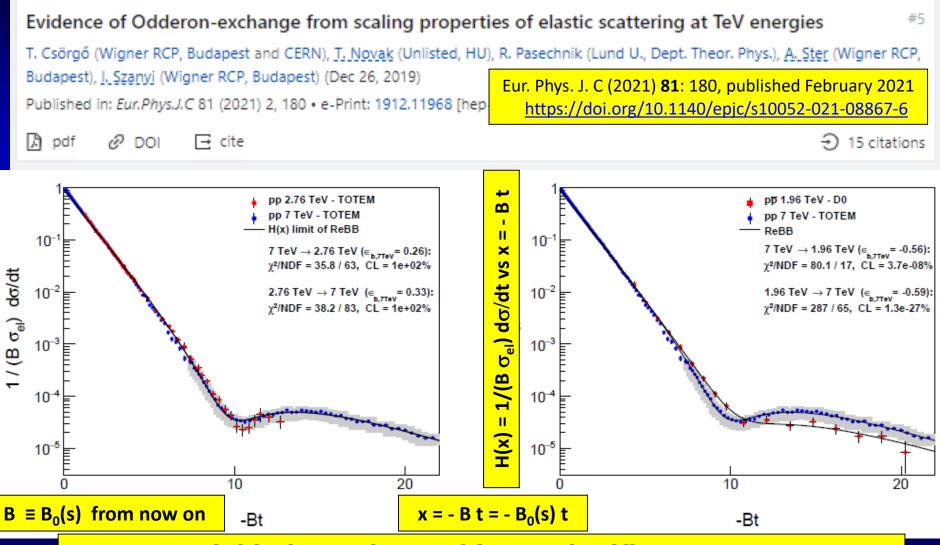
I. Szanyi (Eotvos U. and Wigner RCP, Budapest and Karoly Robert U. Coll.), T. Csörgó (Wigner RCP, Budapest and Karoly Robert U. Coll.) (Apr 21, 2022)

Published in: Eur.Phys.J.C 82 (2022) 9, 827, Eur.Phys.J.C 82 (2022) 827 • e-Print: 2204.10094 [hep-ph]

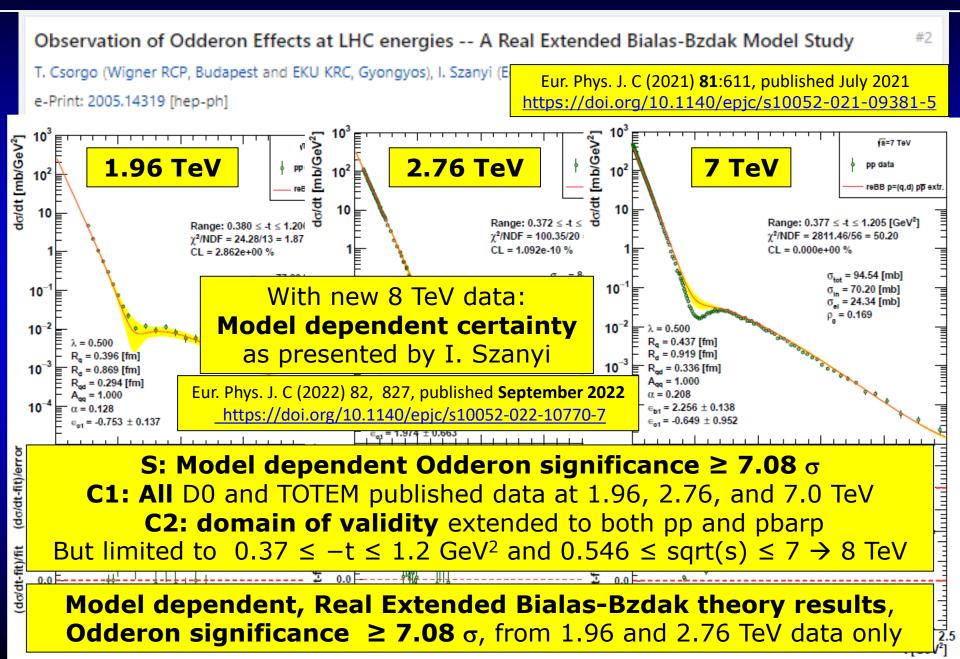
Online attention	New TOTEM 8 TeV data vs ReBB model predictions:		
	EPJ C 82 (2022) 9, 827. <u>Published: Sept 19, 2022</u>		
	In the ReBB model, Odderon exchange is a certainty		
3 1 Wikipedia page	Presented at Diffraction-Low-X'22 by I. Szanyi		

This article is in the 64th percentile (ranked 57,525th) of the 166,532 tracked articles of a similar age in all journals and the 99th percentile (ranked 1st) of the 1 tracked articles of a similar age in *The European Physical Journal C*

What about model independent results?


Three Oldest Hungarian Universities

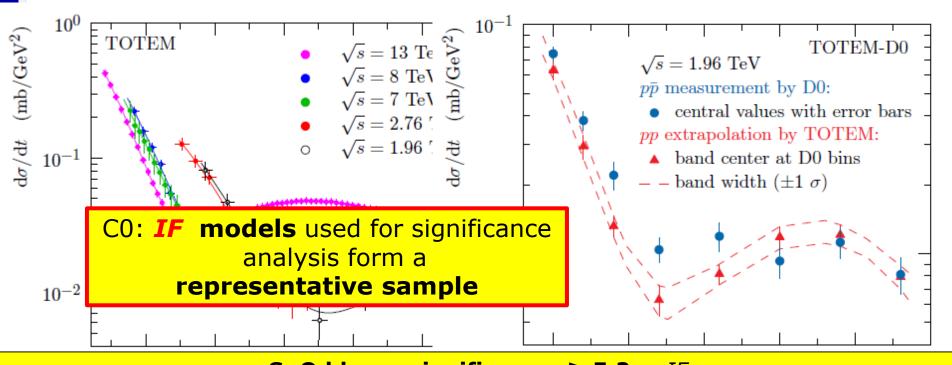
Home » University » UP Story 650 years


University of Pécs: 1367 The history of higher education in Pécs dates back to 1367, when Louis th **University of Pécs:** e episcopal city of Pecs. As a result of an integration proc d, which has become one of the most famous, prestigiou S: Oldest, C: in Hungary on. It has ten faculties which cover the full spectrum of h 1367 precen, the oldest institution of higher education in the country operated continuously in the same city, is one of the research I excellence in Hungary offering the widest spectrum of educational programs in 14 faculties and 24 doctoral schools. oots of higher ed University of Debrecen: University of Debrecen: 1538 e Reformed Col S: Oldest, C: in Hungary, education and culture the gerundium, a too operating continuously and in the same city showing respect for a **Eötvös University:** (S,C) structure evident, S: Oldest, C: in Hungary, S: statement, valid if *teaching* continuously C: condition is satisfied in Nagyszombat in 1635 (sixteen See talk of R. Dardashti at ISMD21 thirty-five) by Archbishop of Esztergom, Péter C changes \rightarrow S changes, examples follow Pázmány, and it is the oldest Hungarian university where the teaching has continued uninter-Eötvös Loránd University: 1635 rupted since its inception. More than sixty years

Hungarian-Swedish Odderon, 2019 -

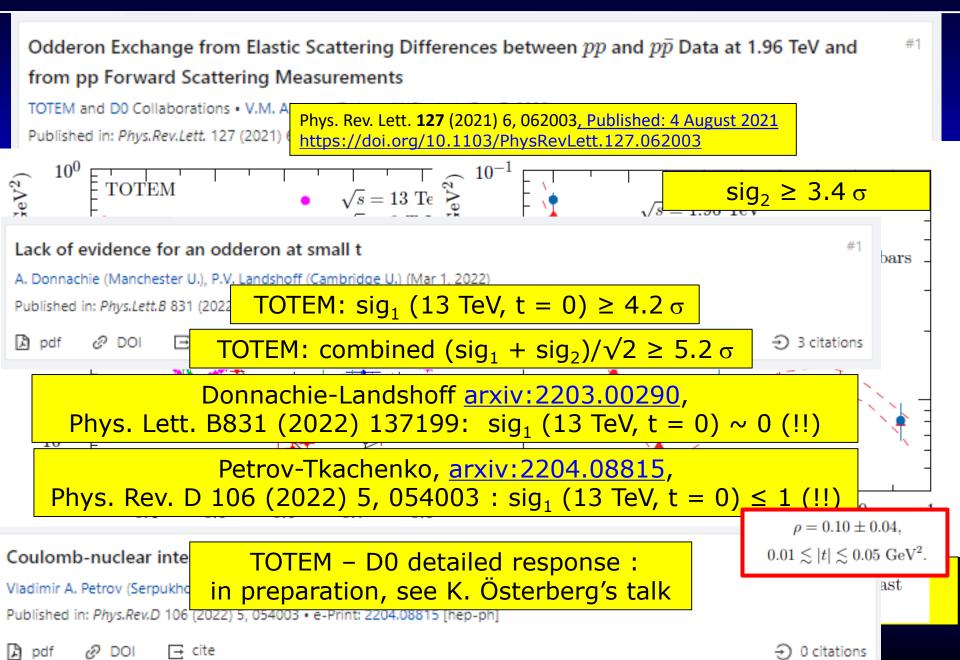
S: Model independent Odderon significance \geq 6.26 σ C1: All D0 and TOTEM published data at 1.96, 2.76 and 7.0 TeV C2: domain of validity is still determined model dependently.

Hungarian-Polish Odderon, 2020-

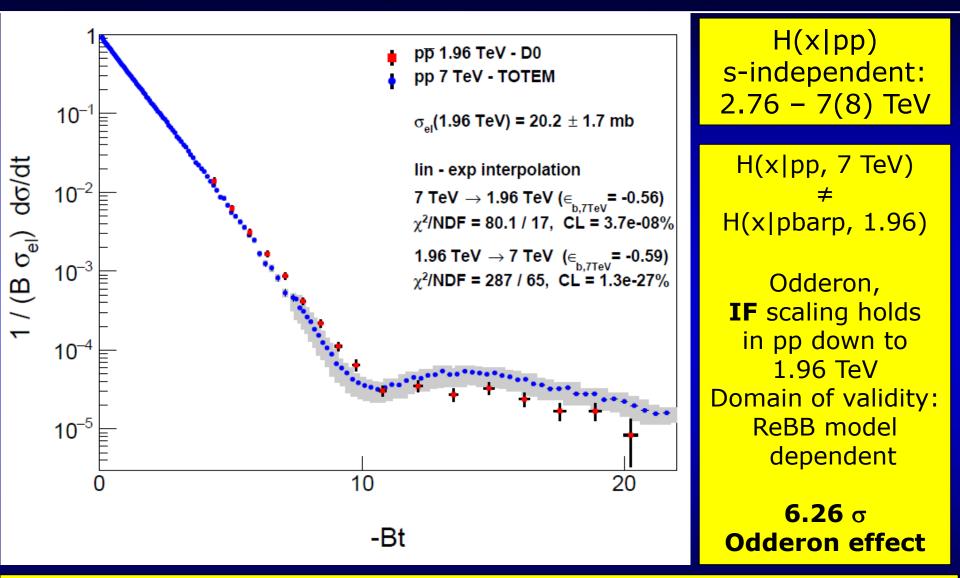

D0-TOTEM Odderon, 2020-

Odderon Exchange from Elastic Scattering Differences between pp and $par{p}$ Data at 1.96 TeV and

from pp Forward Scattering Measurements

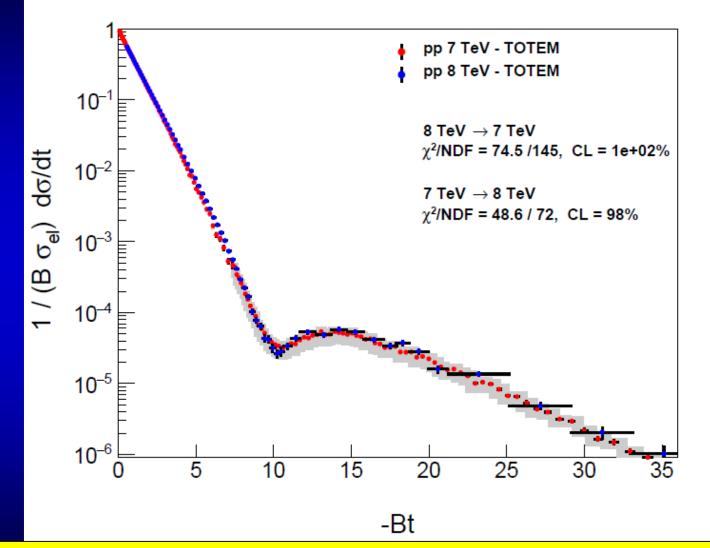

TOTEM and D0 Collaborations • V.M. Abazov (Dubna, JINR) e Phys. Rev. Lett. **127** (2021) 6, 062003, Published: 4 August 2021 Published in: *Phys.Rev.Lett.* 127 (2021) 6, 062003 • e-Print: 20

#1

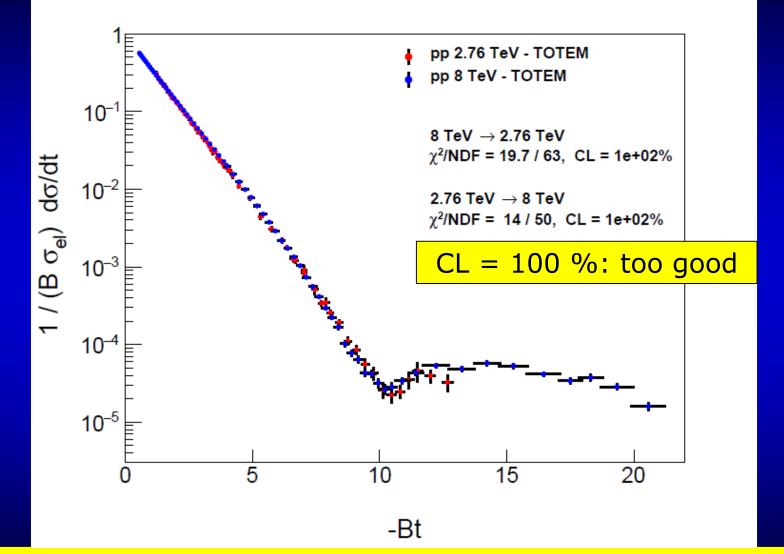


S: Odderon significance $\geq 5.2 \sigma$, *IF* C1: *if* almost model independently combined with $\sqrt{s} = 13$ TeV data at t = 0: σ_{tot} and ρ_0 C2: *if* a **new pp dataset** at 8 TeV and **a new data point** at 2.76 TeV, C3: *if* only 8 out of the 17 D0 points are used C4: *if* D0 pbarp data and TOTEM pp extrap.data are **assumed** to be **equal at t=0**

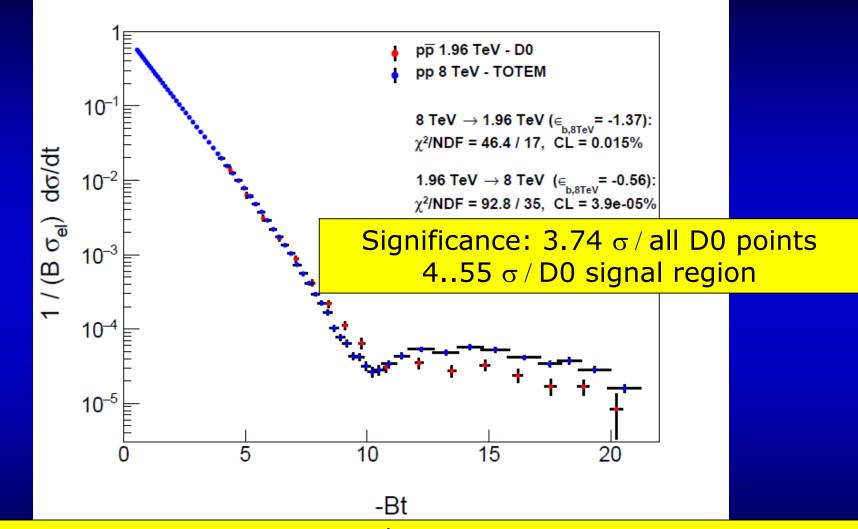
Status of D0-TOTEM Odderon search



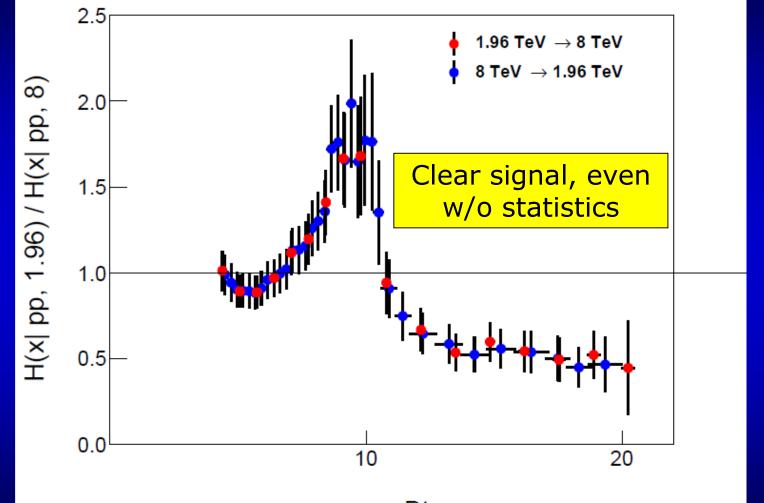
Back to Scaling: Model independently


Energy range: tested **both** model independently and with modelling. Modelling is useful, but model independent tests more important!

H(x) scaling of 7 and 8 TeV data

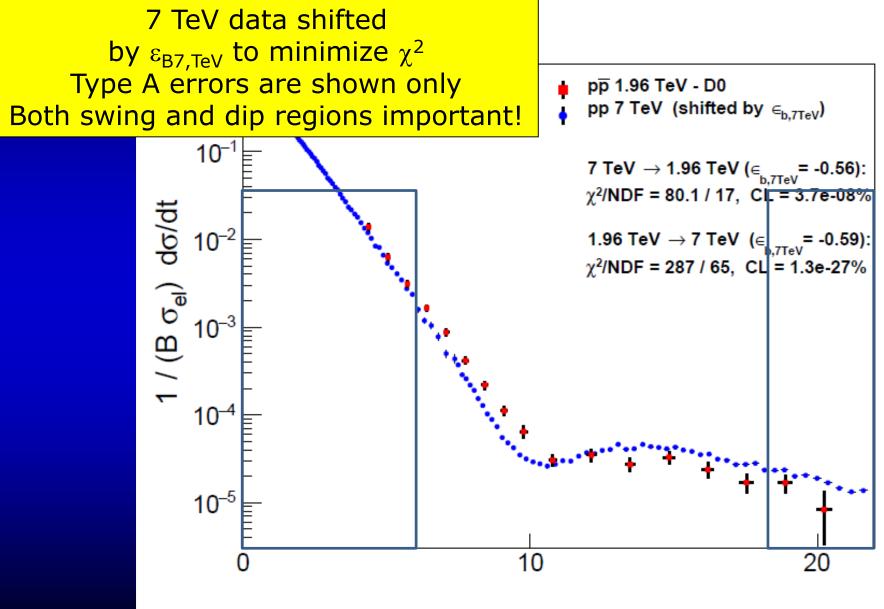

Energy range: H(x) scaling model independently up to \sqrt{s} = 8 TeV. Uses final, published TOTEM d_{\sigma}/dt data at 8 TeV

H(x) scaling of 2.76 and 8 TeV data


Energy range: H(x) scaling valid between \sqrt{s} = 8 and 2.76 TeV. Uses final, published TOTEM d_{\sigma}/dt data at 8 TeV

H(x): Odderon signal, new 8 TeV data

H(x) scaling is violated between \sqrt{s} = 8 TeV pp and 1.96 TeV pbarp. Hungarian-Swedish Odderon signal confirmed with final, published TOTEM d_{\sigma}/dt data at 8 TeV. Model independently.


H(x|pbarp)/H(x|pp): Odderon peak

H(x) scaling is violated between \sqrt{s} = 8 TeV pp and 1.96 TeV pbarp. TOTEM d_{\sigma}/dt data at 8 TeV. Odderon exchange, as a peak.

7 TeV: CLOSING DOORS/GATES

-Bt

7 TeV RESULTS, CLOSING GATES

Two sliding gates of size n and size m: (n,m): Leaving out the first n and last m D0 point

Sliding door technique with two wings (n,m)

Left door excludes the first n, right door excludes the last m D0 points

n	m	Odderon signal	Background	
2	2	6.27 σ	1.68 σ	
3	2	6.33 σ	1.70 σ	
4	2	6.21 σ	2.37 σ	

MODEL INDEPENT RESULT 1: In best window, optimized Odderon signal is 6.33 σ

MODEL INDEPENT RESULT 2:

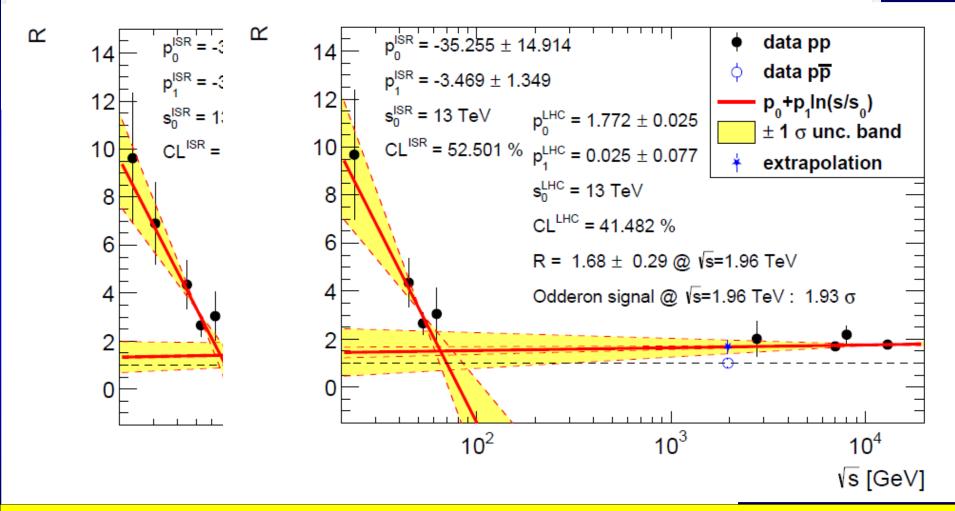
Best window: leaving out first 3 and last 2 D0 point

MODEL INDEPENT RESULT 3: Outside the best window: H(x|pp) = H(x,pbarp) **pp and pbarp backgrounds agree within 1.7** σ

CROSS-CHECK: SIGNAL AT 8 TeV

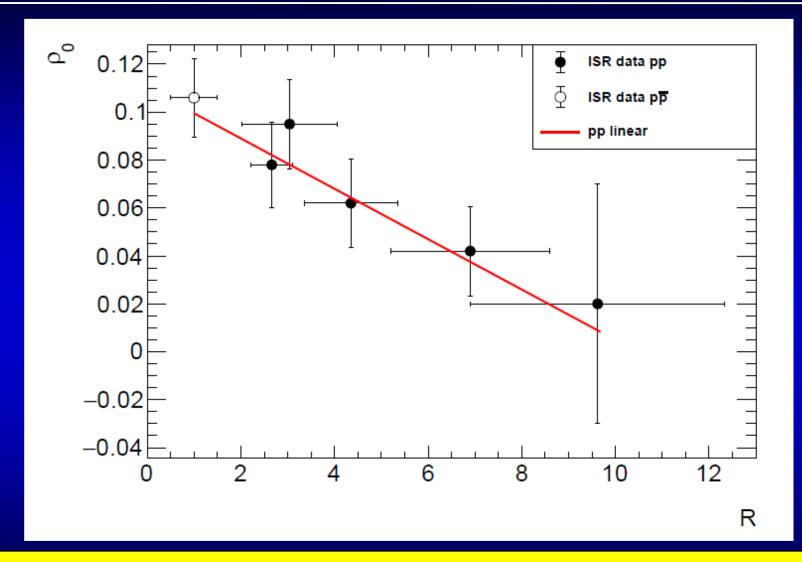
	n=left m=right					
	n\m	0	1	2	3	
<u>Colours</u>		eps=-1.26 chi2=45.854 sigma=3.74 left=0.1384 right=1.31	eps=-1.20 chi2=44.541 sigma=3.77 left=0.1275 right=3.5	eps=-1.05 chi2=41.006 sigma=3.60 left=0.1023 right=6.44		
Greatest σ in the row	1		eps=-1.26 chi2=44.408 sigma=3.90 left=0.082 right=3.47	eps=-1.11 chi2=40.898 sigma=3.74 left=0.103 right=6.38		
Greatest σ in the column	2	sigma=4.01	eps=-1.21 chi2=44.323 sigma=4.04 left=0.128 right=3.50	eps=-1.07 chi2=40.792 sigma=3.88 left=0.153 right=6.42		
Greatest σ in the table	3		eps=-1.15 chi2=44.191 sigma=4.19 left=0.014 right=3.53	eps=-0.99 chi2=40.631 sigma=4.03 left=0.006 right=6.50		
		chi2=45.492 sigma=4.30	eps=-1.18 chi2=44.175 sigma=4.34 left=0.415 right=3.51	eps=-1.02 chi2=40.624 sigma=4.19 left=0.374 right=6.47		
	5	chi2=45.044 sigma=4.42	eps=-1.28 chi2=43.748 sigma=4.46 left=0.866 right=3.46	eps=-1.10 chi2=40.241 sigma=4.32 left=0.794 right=6.39		
	6	eps=-1.52 chi2=44.113 sigma=4.50 left=2.29 right=1.26	eps=-1.40 chi2=42.850 sigma=4.55 left=2.24 =3.39	eps=-1.26 chi2=39.416 sigma=4.42 left=2.13 right=6.23		
	7	-	-	eps=-1.51 chi2=37.211 sigma=4.41 left=5.80 right=5.98		

Two sliding gates of size n and m: (n,m): Leaving out first n and last m D0 point


> (n+1,m): pull vs (n,m+1) pull Go direction of greater signal

Color code: Best signal 4.55 σ 5.0 \geq signal \geq 4.0 σ 4.0 \geq signal \geq 3.0 σ

A model-independent relation: R~p


Lack of evidence for an odderon at small t

#1

In the ReBB model: $\rho = \rho_0 + \rho_1 \ln(s/s_0)$ In the TeV range: $R = R_0 + R_1 \ln(s/s_0)$ Thus $\rho(R) = A + B R$: connects large t and small t signals!!

Cross-check: R~p

In the ReBB model: $\rho = \rho_0 + \rho_1 \ln(s/s_0)$ In the TeV range: $R = R_0 + R_1 \ln(s/s_0)$ Thus $\rho(R) = A + B R$: connects large t and small t signals!!

OBSERVATION OF ODDERON

Model-indepent H(x) signal confirmed at 8 TeV

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

For most of us, physics terms such as odderon are – and will always remain – firmly lodged in the science fiction realm. Not so for the scientific community, whose determined members spent nearly half a century searching (without much success) for this mythical particle.

4

Œ

Now, a research team including physicists from Hungary and Sweden has discovered the odderon by analysing experimental data from the Large Hadron Collider (LHC) at Switzerland's European Organization for Nuclear Research, better known as CERN. Supported by the EU-funded MorePheno project, the physicists have published a paper describing their findings in the 'The European Physical Journal C'.

Particle physics milestone achieved at CERN

After 50 years of research, physicists have found evidence that the elusive subatomic quasiparticle called odderon actually exists.

D0-TOTEM odderon: Nature, CERN

CERN Accelerating science

ABOUT NEW:

News → News → Topic: Knowledge sharing

Voir en français

Relive 2021 at CERN

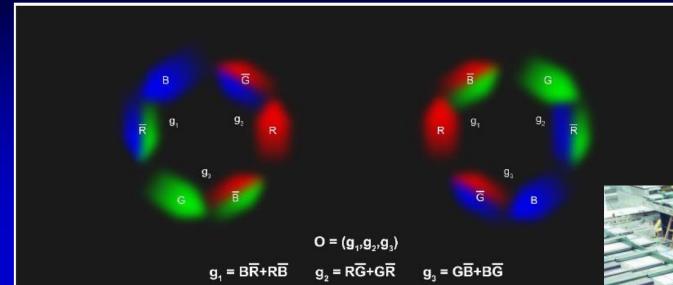
Highlights of the year at CERN, from exciting particle physics results to accelerator milestones and much more

21 DECEMBER, 2021

E._- 1.96 BV

The most direct way to demonstrate the existence of the odderon to to compare of, and one at equal and sufficiently high

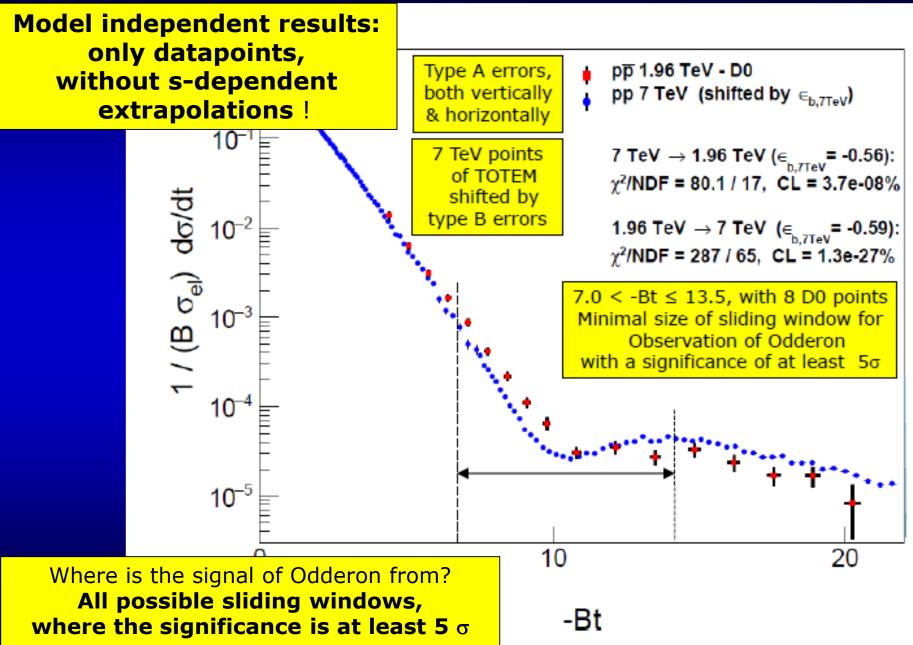
community was that this was not


ER. AT 10 ART KLIR: Abarra V.M. et al. Off malastic southering differences advance or praced out data at 1.04 TeV and from or forward southering massurements. Phys. Rev. Let. 1 27 (142 00) (2021)

of differential cross-sections

NATURE REVIEWS INHY SICS.

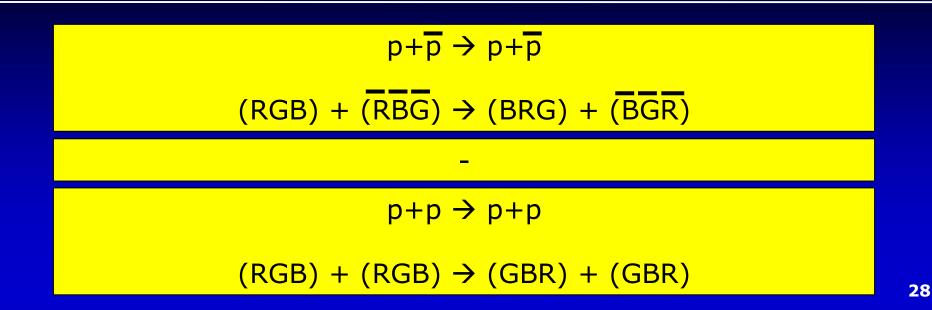
Interaction WAR

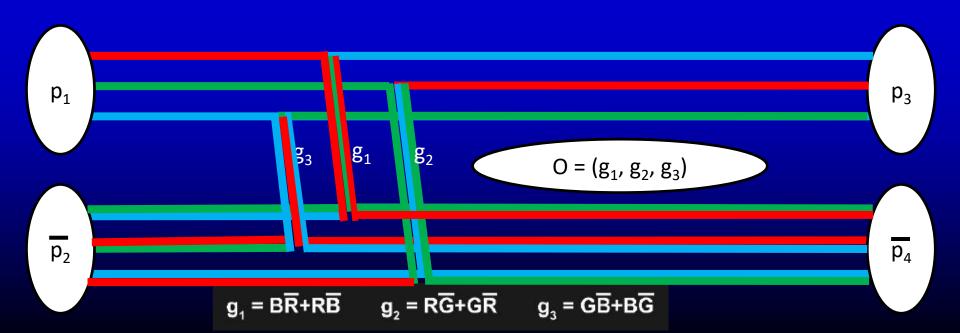

Illustrations: Odderon, TOTEM, DO

7 TeV: SLIDING WINDOW for 5 σ

BEST SIGNAL AT 7 TeV

n=left m=right								
n\m	0	1	2	3	4	5	6	7
	eps+ 0.56	eps= 0.51	eps+ 0.46	eps+ 0.32	eps= 0.13	eps+0.35		
	dhi2- 074	chi2+77.278	chi2+75.842	chi2+67.834	chi2=58.513	chi2+50.046		
0	sigm 26	sigma=6.21	sigma+6.25	sigma+5.85	sigma=5.33	sigma+4.83		
	lett=	le#+2.17	left+2.08	left+1.83	left=1.52	left+0.87		
	right 29	right+1.34	right=7.23	right=8.09	right=5.94	right=21.2		
	cpr	eps+ 0.53	eps+ 0.48	eps+ 0.34	eps= 0.15	eps+0.3		
	dhl2=77.8	chi2+75.082	dhl2+73.740	chi2+65.983	chi2=56.974	chi2=49.150		
1	sigm 25	sigma+6.20	sigma+6.25	sigma+5.86	sigma=5.36	sigma+4.91		
	left+:	left=1.95	left+1.86	left+1.63	left=1.35	left=0.79		
	right 5	right+1.25	right=7.00	right=7.83	right=5.71	right=20.6		
	eps+ 9	eps+ 0.55	eps+ 0.50	eps+ 0.36	eps= 0.17	eps=0.25	eps=0.98	
	chi2	chi2+73.115	chi2+71.858	chi2+64.330	chi2+55.605	chi2=48.339	chi2=23.631	
2	sigma_6.25	sigma+6.21	sigma+6.26	sigma+5.9	sigma=5.42	sigma=5.01	sigma+2.81	
	left+	left+1.28	left+1.2	left+0.98	left=0.73	left=0.30	left=0.001	
	right 7	right+1.16	right+6.78	right+7.57	right=5.49	right=19.9	right+7.36	
	eps+	eps+ 0.57	eps+ 0.52	eps+ 0.38	eps= 0.19	eps=0.22	eps+0.97	
	chiz-	chi2+71.823	chi2+70.644	dhi2+63.331	chi2+54.859	chi2=48.024	chi2=23.630	
3	signt 29	signa+6.26	sigma+6,33	sigma+5.98	sigma=5.52	sigma=5.15	sigma+3.00	
	left			left+5.18	left=4.68	left=3.69	left=2.20	
	right+2.50	rig k+1.07	right=6.06	right+7.32	right=5.27	right=19.5	right=7.30	
	eps+ 0.64	eps+ 0.60	eps+ 0.55	eps+ 0.42	eps= 0.23	eps=0.11	eps+0.87	
	chi2+68.538	chi2+66.074	chi2+65.028	chi2+58.101	chi2=50.123	chi2=44.210	chi2=21.344	
4	sigma+6.04	sigma+6.02	sigma+6.09	sigma+5.76	sigma=5.15	sigma=5.02	sigma+2.94	
	left+8.14	left+8.03	left∓7.89	left+7.53	left=7.03	left=3.69	left+4.48	
	right+2.38	right+0.95	right+6.24	right=6.83	right=4.84	right=19.5	right=6.66	
	eps+ 0.67	eps+ 0.63	eps+ 0.58	eps= 0.45	eps= 0.27	eps= 0.09		
	chi2+60.359	chi2=58.006	dhi2=57.084	chi2=50.529	chi2+53.034	chi2+37.706		
5	sigma+5.61	sigma+5.59	sigma+5.68	sigma+5.35	sigma+4.74	sigma+4.64		
	left+8.34	left+7.93	left+7.52	left=6.18	left=4.66	left+3.36		
	right=2.27	right=0.84	right=5.82	right=6.47	right=4.43	right=14.8	H	
	eps= 0.78	eps= 0.74	eps= 0.71	eps= 0.58				
	chi2=51.452	chi2=49.510	chi2=48.99	chi2=43.744				Be
6	sigma=5.09	sigma=5.10	sigma=5.23	sigma+4.98				D
	left=13.7	left=13.1	left=12.7	left=11.1				Sa
	right=1.88	right=0.48	right=4.64	right=5.03				Ja
	eps= 0.94	eps= 0.9	eps= 0.88					5.5
	chi2+36.690	chi2+35.255	chi2=35.114					D. D
7	sigma+3.99	sigma+4.03	sigma+4.21					
	left=14.7	left=14.3	left=14.1					
·	right=1.38	right=0.13	right=3.2					


Two sliding gates of size n and m: (n,m): Leaving out first n and last m D0 point


(n+1,m): pull vs (n,m+1) pull Go direction of greater signal

Color code: Best signal 6.36 σ Safe signal \geq 5.5 σ 5.5 \geq signal \geq 5.0 σ signal \leq 5.0 σ

ł

Passion for Discovery: Odderon

3+2 Oldest Hungarian Universities

Why Eszterházy Károly Catholic University (EKCU)?

Eszterházy Károly Catholic University is one of the oldest higher educational institutions in Hungary. Opened in 1774 it has served the Northern Hungarian region for nearly three centuries. Now the university offers potential students the opportunity to work towards their BA. BSc. MA. MSc or doctorate

History of MATE

Eszterházy Károly Catholic University: 1774 (or, 2020?)

minely

With the foundation Hungarian University of Agriculture and Life Sciences (MATE), one of the largest agricultural-focused, multi- disciplinary higher education institutions in Europe was established on 1 February 2021.

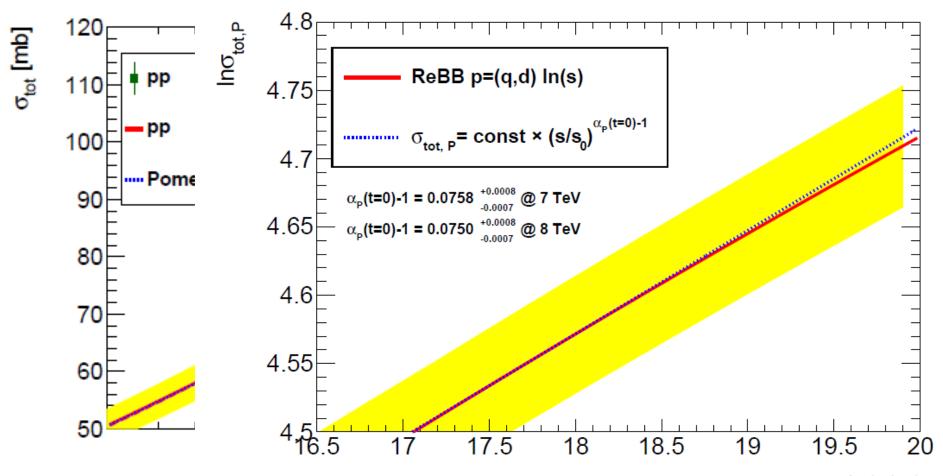
With such a long history and legacy of excellence, Hungarian University of Agriculture and Life Sciences stands as a central pillar of higher education in Hungary and throughout the region.

Milestones in the history of MATE:

1787 Faculty of Veterinary Medicine founded

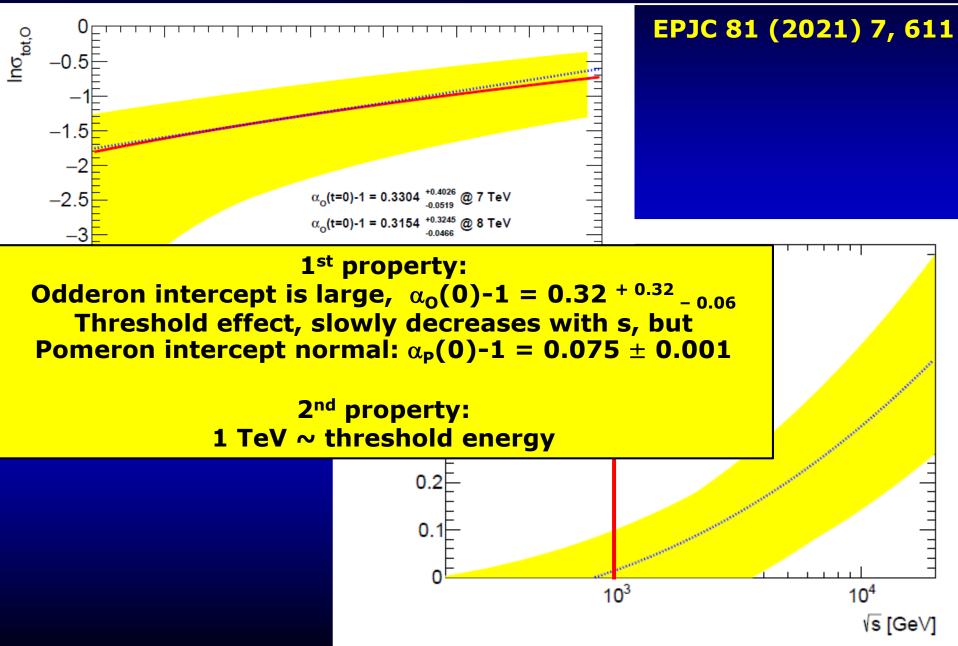
- 1880 Ybl Miklós Technical College founded
- 1917 Teacher Training College, Jászberény founded
- 1920 University of Agriculture was founded in Budapest
- 1950 University of Agriculture moved to Gödöllő
- 2000 Szent István University founded
- 2011 institutional integration to 7 faculties

2016 integration of 3 faculties (Food Science, Horticultural Science and Landscape Architecture and Urbanism) of Corvinus University of Budapest; and the disintegration of the Faculty of Veterinary Medicine


2020 integration of Kaposvár University, Eszterházy University's Károly Róbert Campus (Gyöngyös) and Pannon University's Georgikon Faculty in Keszthely

MATE: 2021 (or, from 1787)

POMERON PROPERTIES


MODEL RESULT BASED ON EPJC 81 (2021) 7, 611

 1^{st} property: Pomeron intercept normal: $\alpha_{p}(0)-1 = 0.075 \pm 0.001$

 $\ln(s/s_{0})$

ODDERON PROPERTIES

SUMMARY: ODDERON DISCOVERED IN 3 PAPERS, NEW: FOCUS ON ITS PROPERTIES

Bialas-Bzdak p = (q,d) model: certain Odderon effect statistical significance \gg 5 σ

Odderon first discovered in three published papers: three different analysis, each with a statistical significance > 5 σ

(S,C) structure evident,

Scientific Statement S is valid if Condition C is satisfied

0th property: Odderon exists! (Questioned: where, at 13 TeV and t=0?)

Odderon properties: from Bialas-Bzdak model, so far valid in a limited s and -t > 0.37 GeV² range only

Odderon intercept is large, $\alpha_0(0)-1 = 0.32 + 0.32 - 0.06$ **Pomeron intercept normal:** $\alpha_P(0)-1 = 0.075 \pm 0.001$

> 1.96 TeV – 8 TeV: Threshold effect, just appearing

Ongoing debate: what is the significance of the D0-TOTEM PRL? Is there any evidence for Odderon at t= 0? Response is coming...

First three Odderon Proceedings, $> 5 \sigma$

Proton Holography Discovering Odderon from Scaling Properties of Elastic Scattering #2 T. Csorgo (Wigner RCP, Budapest and Eszterhazy Karoly U., Eger), T. Novak (EKU KRC, Gyongyos), R. Pasechnik (Lund U. and Rez, Nucl. Phys. Inst.), <u>A. Ster</u> (Wigner RCP, Budapest), J. Szanyj (Wigner RCP, Budapest and Eotvos U.) (Apr 15, 2020)						
Published in: EPJ Web Conf. 235 (2020) 06002 • Contribution to: ISMR	<i>EPJ Web Conf.</i> 235 (2020) 06002, proc. ISMD 2019 https://doi.org/10.1051/epjconf/202023506002					
Scaling of high-energy elastic scattering and the observation of Odderon #1 T. Csörgó (Wigner RCP, Budapest and Eszterhazy Karoly U., Eger), <u>T., Novák</u> (EKU KRC, Gyongyos), R. Pasechnik (Lund U., Dept. Theor. Phys.), <u>A. Ster</u> (Wigner RCP, Budapest), <u>I. Szanyi</u> (Wigner RCP, Budapest and Eotvos U.) (Apr 15, 2020) Published in: Gribov-90 Memorial Volume, pp. 69-80 (2021) (World Scientific, Singapore, ed. Yu. Dokshitzer, P. L\'evai, \'A. Luk\'acs and J. Nyiri) • e-Print: 2004.07318 [hep-ph] Puf Ø DOI E cite						
Comparison of differential elastic cross sections in pp and $p\bar{p}$ collisions as evidence of the existence #1 of the colourless C -odd three-gluon state D0 and Totem Collaborations • <u>Christophe Royon</u> (Kansas U.) for the collaborations. (Dec 5, 2020) Published in: <i>PoS</i> ICHEP2020 (2021) 496 • Contribution to: ICHEP2020, 496 • e-Print: 2012.03150 [hep-ex]						
B pdf @ DOI ⊡ cite	https://doi.org/10.22323/1.390.0496					