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Introduction to 2->2 Amplitudes

We consider 2 -> 2 partonic (colourful) scattering amplitudes in a massless gauge theory
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+ Planar N = 4 sYM known to all orders, courtesy of the BDS ansatz [Bern, Dixon, Smirnov 05]
+ Three-loop full colour A/ =4 sYM and recently in QCD for all channels
[Henn, Mistlberger 16] [Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi 21, 21, 22]

The high-energy limit is defined to be where the centre of mass energy is much greater than the momentum transfer

s > —1



% Constraints on infrared structure of

Why care about high-energy amplitudes?

+ Formal - simplification gives opportunity to
study high-loop orders and to resum
perturbative amplitudes

71 rungs

+ Boundary information for fixed order

calculations via differential equations simplification in

high-energy limit

bubble integrals
Regge cuts .

amplitudes
+ Perturbative meaning to Regge poles and two-dimensional



Complex Angular Momentum Plane

Let us travel back to the 1960s, prior to QCD angular momentum in t-channel dependence of a state of

[Regge ’59, '60; Eden, Landshoff, Olive, Polkinghorne ’66; Collins “77] 0O / tahﬂgLLllar mgmentrm r -~
are the Legendre polynomials

Start with partial wave expansion of the scattering amplitude M ~ E (20 4+ 1)Ap(t)Py(s) —

/=0
Sommerfeld—Witson transforms series into a counter integral, picking up poles in the complex angular momentum plane

Legendre polynomials have the asymptotic behaviour
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Now we open up the contour

Reqgge cuts arise from onl
Q egge poles / ® 99 Y

. . nonplanar diagrams [Mandelstam *63]
at non-integer locations

Only from Feynman integral
analysis, there is no colour (yet)

Doing so we will pick up

' : R tg —
other analytic behaviour ©gge cuts

We will show how to
disentangle cuts and poles
in perturbative QCD

/
This contour is subleading in high energy limit




dignature Symmetry

In the high-energy limit we have S

We define even and odd amplitudes under this signature symmetry M-

)

We also define the symmetric-even logarithm L = log <—

O

Expandingin I, M®&) — Z (%)
-

The coefficients M (—™™) are purely real and MFmm) geg purely imaginary (caron-Huot, Gardi, Vernazza 17]
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Tree Level

S

+ Leading power In the large ratio (-7)
28
Mtree — 937Tz ' Tj5>\1>\45>\2)\3
+ Gluon exchange in the t-channel

+ Helicity Is conserved

+ (Golour matrices in representation of scattered partons

+ For gluon-gluon the tree-level is only in the 8, representation in the
t-channel basis



Leading Logarithms (LL)

+ At each order in the perturbative expansion large logarithms develop

+ The leading logarithms (aSL)”Can be resummed by the famous Regge pole

[Kuraev, Fadin and Lipatov ’76]

2 €
MULL — (Caag(t,n)L pgqtree  q(t, p?) = (j: ;z (%) O(a?)  rp =14+ O()

* Infrared divergences regulated in dimensional regularisation d = 4 — 2e¢

+ Purely real, proportional to tree-level

1 1 s Q‘g(t7u2)
* Dresses the gluon propagator : ’ + (7) @

+ The gluon Reggeizes §




Next-to-Leading-Logarithms (NLL) Real

+ Terms of order o L™™" el TS
+ The amplitude still factorises, Regge factorisation é
[Fadin, Fiore, Kozlov, Reznichenko ’06; loffe, Fadin, Lipatov '10; Fadin, Kozlov, Reznichenko ’15]
MNLL,(—) — O, (t)Cj (t)eCAag(t,MQ)LMtree @
+ Need impact factors that depend on the scattered particles é
+ Regge trajectory at two loops oW D
~_ i (t) _~

+ Proportional to the colour structure of the tree-level



Next-to-Leading-Logarithms (NLL) Imaginary

+ |n gluon-gluon thel 8; 27 0colour channels open up
first appearance of a cut

+ |n the soft approximation, BFKL kernel simplifies

+ Allows for an iterative solution

+ |nfrared divergences to all orders and resummed

56 [Caron-Huot, Gardi, Reichel, Vernazza ’17]

/\/ll[\i]LL’(Jr) — R(Z;T— . Z (%)nLn_l (CAagl))n + O(e”)

+ Finite terms known to arbitrary order (resummation unknown)

[Caron-Huot, Gardi, Reichel, Vernazza '20]

n=1



https://arxiv.org/abs/1711.04850

NNLL Real

* Regge factorisation breaks, need to add a term as a new channel opens up

* The new term can be accessed by Balitsky-JIMWLK caorruora

+ The four-loop Iis non-planar

MANNLL, (=) _ C-(t)C'j (t)eCAag(t,u2)LMtree 4 MNNLL, (=), NF

[/

universal across gauge theories

+ Computations up to four loops for any scattered partons AR

[Caron-Huot, Gardi, Vernazza ’17; Falcioni, Gardi, CM, Vernazza ’20]

+ |s this a Regge pole and Regge cut separation? gNW
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Regge Cuts

[Falcioni, Gardi, Maher, CM, Vernazza '21, PRL]

» Let us see the NNLL amplitude at two loops

M(—,Q,O) — (Cz(z) _|_Cj(2) —|—CZ(1)CJ(1)> Mtree_|_M(—,2,O),NF

» Free to move terms that are in 8, from the extra term into a new definition of the impact factors

» What criteria do we have”? Regge cuts are non-planar Mandeistam '63]

» Move all planar contributions into impact factors and Regge trajectory

MNNLL, () _ (Ci(t)cj(t)GCAagLMtree _I_MNNLL,(—),NF|p1anar) . AYNNLL,(—),NF ron-planar
— éz (t)éj (t)@cA&gLMtree _I_MNNLL’(_)’NF non-planar

» @Qives a perturbative description of the Regge pole and Regge cut separation
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Recent Progress

Matching to fixed order computations we can find pole parameters at NNLL

[Ahmed, Henn, Mistlberger ’19; Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21]

Three-loop Regge trajectory which has the expected infrared structure

[Falcioni, Gardi, Maher, CM, Vernazza '21, PRL,; see also Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21] [Korchemskaya, Korchemsky ’94, ’96]

Two-loop impact factors at higher orders in ¢

High-energy limits constrain infrared singularities through four loops

[Caron-Huot ’13; Falcioni, Gardi, Maher, CM, Vernazza '21]

+ Useful in bootstrapping the full structure in general kinematics

[Almelid, Duhr, Gardi, McLeod, White ’17]
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Summary

Real Imaginary

LL « ? L" @ one-loop Regge trajectory

two-loop Regge trajectory infrared divergences resummed

NLL ot L™

. finite terms to arbitrary order
one-loop impact factors

resummation unknown

<gww four loops

explicit Not yet developed

calculation

NNLL o L™ 2

A
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Outlook

+ Resum full imaginary amplitude at NLL

+ |nterpretation in the complex angular momentum plane?

+ Five-loop and beyond for the real NNLL

+ Understand imaginary part at NNLL

+ 2 -> 3 amplitudes

# Significant interest for fixed order computations

* How to organise? What can we extract”? Phenomenological uses?
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Outlook

+ Resum full imaginary amplitude at NLL

+ |nterpretation in the complex angular momentum plane?

+ Five-loop and beyond for the real NNLL

+ Understand imaginary part at NNLL Thank y0u

+ 2 -> 3 amplitudes

« Significant interest for fixed order computations

* How to organise”? What can we extract? Phenomenological uses?
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Backup slides



Formulating highly energetic partons as Wilson lines

[Caron-Huot ’13; Caron-Huot, Gardi, Vernazza ’17]

“eikonal approximation” Fourier conjugate of t regulate rapidity divergences by tilting
| . oo L ora L Wilson-line off the light cone 5
U(z,) =Pexp |igsT / de™ AL (7,2~ =0,21) ) — 1 log jn Tey = [T°U ()] 5 -
. — 0 . — A — ¢
0
our parton is a collection . . 2 — T'n = |U(z;)TY]
of such Wilson lines 7 evolves according to Balitsky-JIMWLK | OU (2;)
Xs <07 * <03 a a a a a a a
d_77 i) = —H ;) H=55 /ddziddzjddz‘) (Zgézg,)of—e {Tz’,LTj,L + TirT) R — Usd (20) (T ThR + T30 T3 R) }
i~0j
Target HLProjectiIe Target ?”3 grojectile
. . . o L — | separated by some
The amplitude is then written as M5 _y55 ~ (105 |e ;) 2 o

Evolve so that they are at equal rapidity
Reggeon field

Expand Wilson line in Reggeons

U = exp [tgs TW| ~ + +

Only odd/even number of Reggeons contribute to the odd/even amplitude
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https://arxiv.org/abs/1309.6521
https://arxiv.org/abs/1701.05241

Explicit momentum-space Hamiltonians

dresses one Reggeon

with the trajectory adds a rung between two Reggeons

The diagonal transitions are

5
oW (p)

Hy = — /ddp Caag(p)W*(p)

0 0

oWe(py) Wb (py
(P) (P Source of the difficulty at NNLL.
Three Reggeons spoll the

symmetry between colour and

+ /ddqddmddpz Hao(q; p1,p2) W& (p1 + Q)WY (p2 — q)(F*FY)*

(pr +p2)*  (p1+¢)? (p2—q)?

with kernel Has(q; p1,p2) =

Pip3 piq? 7°p3 kinematics, which is there for
The off-diagonal transitions are two Reggeons (NLL).
0
Hi 5 =0 /ddplddPQddp te [F*FPFCFS ] W2 (p1) W (p2)W* (ps) Hus(p1, p2, ps) oW (p)

2 € 2\ € 2 € 2 6
| T 9 M f H
th kernel H , D2, =5 n2 B
Wi ' 13(P1, P2, P3) 36{((}91 +p2+p3)2> +(Pg) ((Pl +p2)2> <(p2+p3)2> }
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