Diffraction and Low-x 2022

High Energy 2 -> 2 QCD Scattering Amplitudes

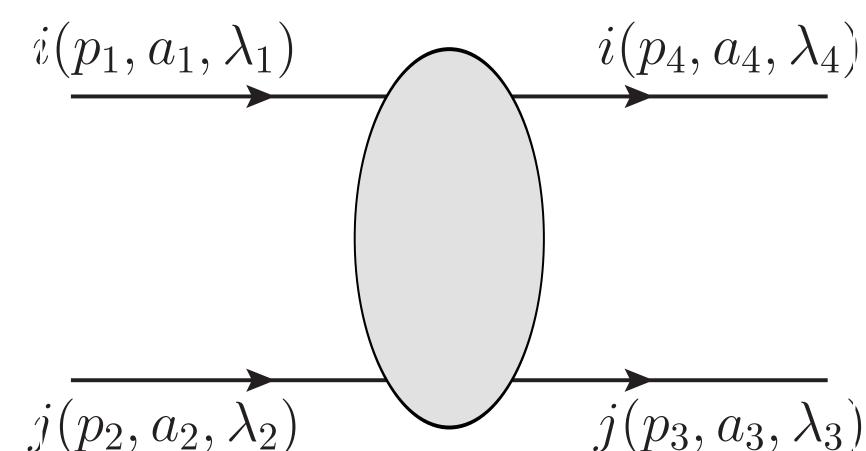
Calum Milloy Universita di Torino and INFN

with thanks to collaborators Gulio Falcioni, Einan Gardi, Niamh Maher and Leonardo Vernazza

Introduction to 2->2 Amplitudes

- We consider 2 -> 2 partonic (colourful) scattering amplitudes in a massless gauge theory
- Described in terms of Mandelstam invariants

$$s = (p_1 + p_2)^2 > 0$$
 $t = (p_1 - p_4)^2 < 0$ $u = (p_1 - p_3)^2 < 0$ $s + t + u = 0$

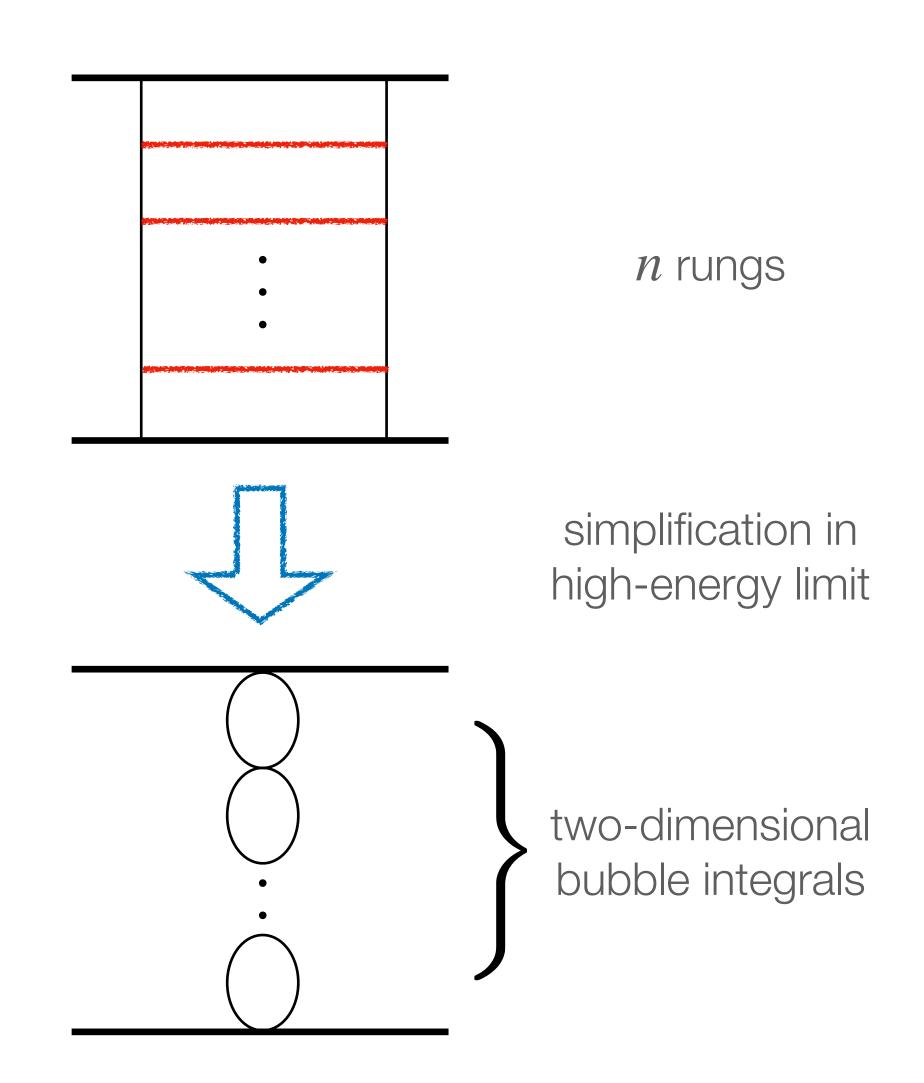


- * At fixed order in α_s
 - * Planar $\mathcal{N}=4~\mathrm{sYM}$ known to all orders, courtesy of the BDS ansatz [Bern, Dixon, Smirnov 05]
 - * Three-loop full colour $\mathcal{N}=4~\mathrm{sYM}$ and recently in QCD for all channels [Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi 21, 21, 22]
- The high-energy limit is defined to be where the centre of mass energy is much greater than the momentum transfer

$$s \gg -t$$

Why care about high-energy amplitudes?

- Formal simplification gives opportunity to study high-loop orders and to resum perturbative amplitudes
- * Boundary information for fixed order calculations via differential equations
- Constraints on infrared structure of amplitudes
- Perturbative meaning to Regge poles and Regge cuts



Complex Angular Momentum Plane

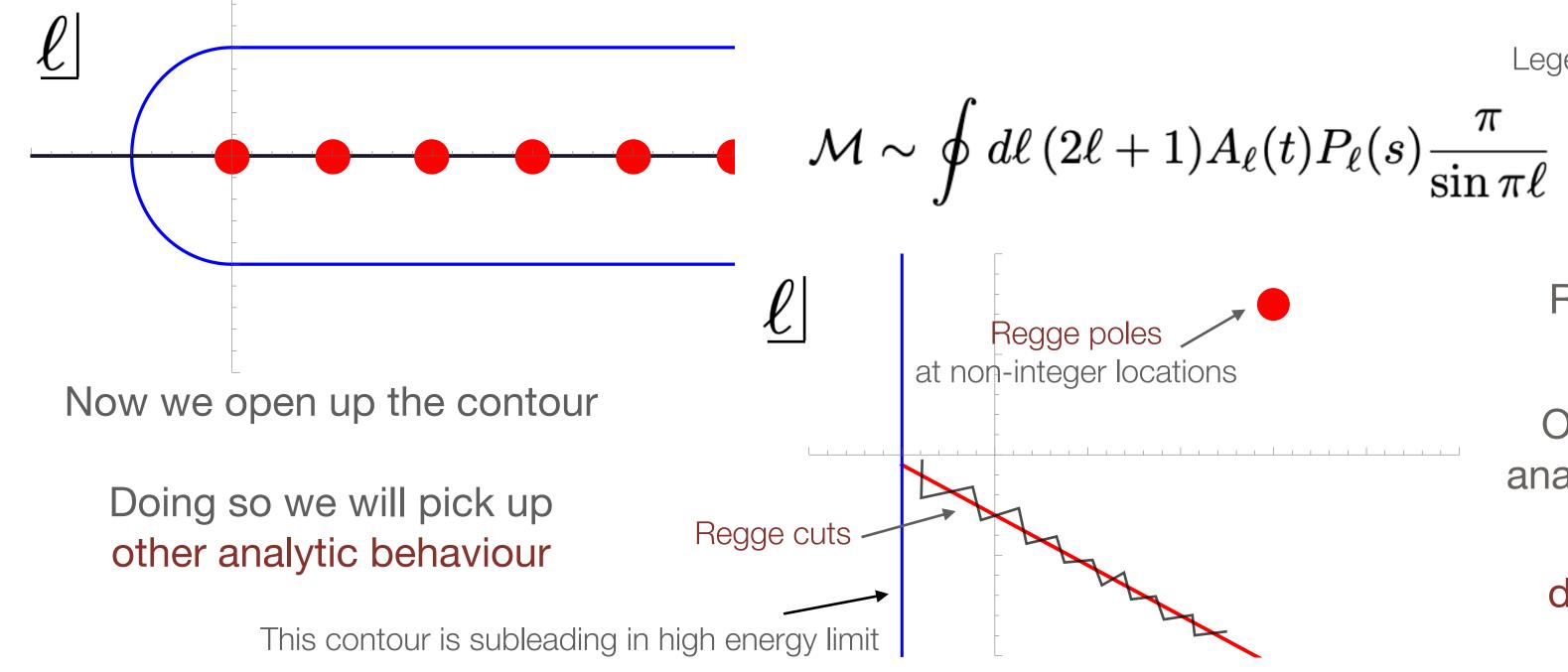
Let us travel back to the 1960s, prior to QCD

[Regge '59, '60; Eden, Landshoff, Olive, Polkinghorne '66; Collins '77]

Start with partial wave expansion of the scattering amplitude

angular momentum in t-channel dependence of a state of angular momentum
$$\ell$$
 are the Legendre polynomials $\mathcal{M} \sim \sum_{\ell=0}^{\infty} (2\ell+1) A_\ell(t) P_\ell(s)$

Sommerfeld-Watson transforms series into a counter integral, picking up poles in the complex angular momentum plane



Legendre polynomials have the asymptotic behaviour

$$\lim_{s \to \infty} P_{\ell}(s) \sim s^{\ell}$$

Regge cuts arise from only nonplanar diagrams [Mandelstam '63]

Only from Feynman integral analysis, there is no colour (yet)

We will show how to disentangle cuts and poles in perturbative QCD

Signature Symmetry

- * In the high-energy limit we have s pprox -u
- * We define even and odd amplitudes under this signature symmetry $\mathcal{M}^{(\pm)}(s,t)=rac{1}{2}igg[\mathcal{M}(s,t)\pm\mathcal{M}(-s-t,t)igg]$
- * We also define the symmetric-even logarithm $L \equiv \log\left(\frac{s}{-t}\right) \frac{i\pi}{2} = \frac{1}{2}\left[\log\left(\frac{-s-i0}{-t}\right) + \log\left(\frac{-u-i0}{-t}\right)\right]$
- * Expanding in L $\mathcal{M}^{(\pm)} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{\infty} L^m \mathcal{M}^{(\pm,n,m)}$
 - * The coefficients $\mathcal{M}^{(-,n,m)}$ are purely real and $\mathcal{M}^{(+,n,m)}$ are purely imaginary [Caron-Huot, Gardi, Vernazza '17]
- * Bose symmetry means it occurs for colour quantum numbers of gluon-gluon
 - * In the t-channel decomposition $\underline{8}\otimes \underline{8}=\underline{1}\oplus \underline{8}_{\underline{a}}\oplus \underline{8}_{\underline{s}}\oplus (\underline{10}\oplus \overline{10})\oplus \underline{27}\oplus \underline{0}$
- * Real, odd parts correspond to 8_a $10 \oplus 10$ and imaginary, even parts to 1 8_s 27 0

Tree Level

* Leading power in the large ratio $\left(\frac{s}{-t}\right)$

$$\mathcal{M}^{\text{tree}} = g_s^2 \frac{2s}{t} \mathbf{T}_i \cdot \mathbf{T}_j \delta_{\lambda_1 \lambda_4} \delta_{\lambda_2 \lambda_3}$$

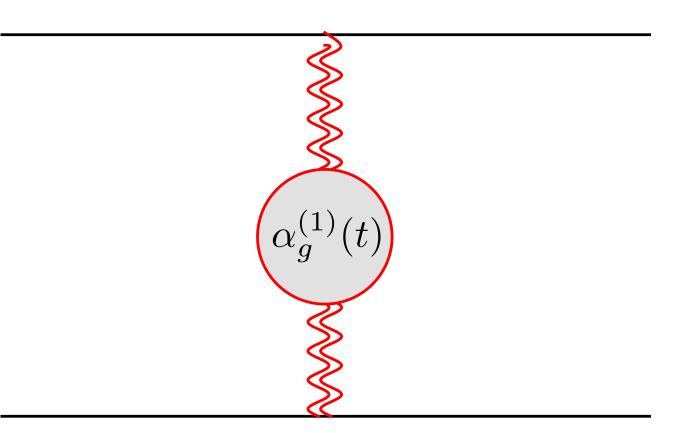
- * Gluon exchange in the t-channel
- * Helicity is conserved
- Colour matrices in representation of scattered partons
- * For gluon-gluon the tree-level is only in the 8a representation in the t-channel basis

Leading Logarithms (LL)

- At each order in the perturbative expansion large logarithms develop
- * The leading logarithms $(\alpha_s L)^n$ can be resummed by the famous Regge pole

$$\mathcal{M}^{\mathrm{LL}} = e^{C_A \alpha_g(t,\,\mu^2)} L \mathcal{M}^{\mathrm{tree}} \qquad \alpha_g(t,\,\mu^2) = \frac{\alpha_s}{\pi} \frac{r_\Gamma}{2\epsilon} \left(\frac{\mu^2}{-t}\right)^\epsilon + \mathcal{O}(\alpha_s^2) \qquad r_\Gamma = 1 + \mathcal{O}(\epsilon^2)$$

- * Infrared divergences regulated in dimensional regularisation $d=4-2\epsilon$
- * Purely real, proportional to tree-level
- * Dresses the gluon propagator $\frac{1}{t} \to \frac{1}{t} \left(\frac{s}{-t}\right)^{\alpha_g(t,\mu^2)}$
 - * The gluon Reggeizes



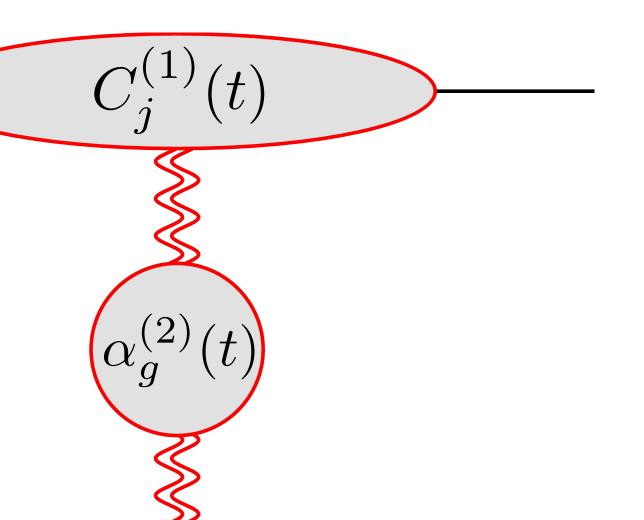
Next-to-Leading-Logarithms (NLL) Real

- * Terms of order $\alpha_s^n L^{n-1}$
- * The amplitude still factorises, Regge factorisation

[Fadin, Fiore, Kozlov, Reznichenko '06; Ioffe, Fadin, Lipatov '10; Fadin, Kozlov, Reznichenko '15]

$$\mathcal{M}^{\mathrm{NLL},(-)} = C_i(t)C_j(t)e^{C_A\alpha_g(t,\mu^2)L}\mathcal{M}^{\mathrm{tree}}$$

- Need impact factors that depend on the scattered particles
- * Regge trajectory at two loops
- Proportional to the colour structure of the tree-level



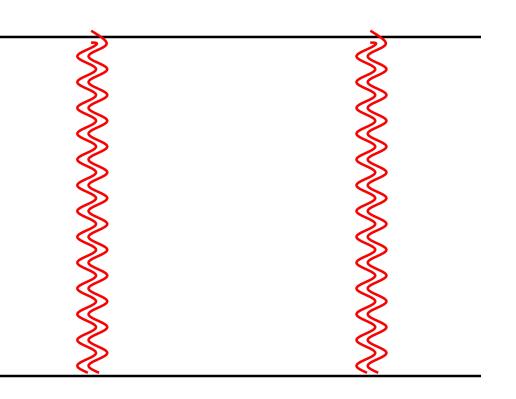
Next-to-Leading-Logarithms (NLL) Imaginary

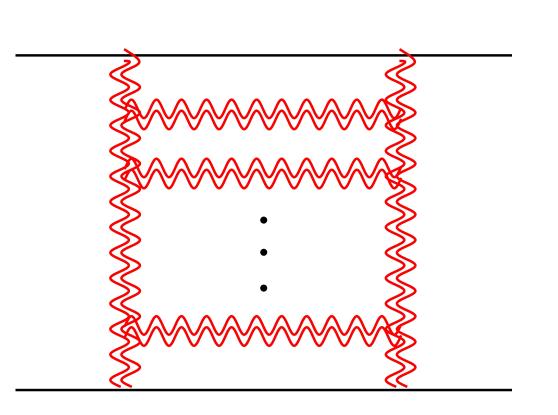
- * In gluon-gluon the $\underline{1}$ $\underline{8}_s$ $\underline{27}$ $\underline{0}$ colour channels open up first appearance of a **cut**
- * In the soft approximation, BFKL kernel simplifies
- Allows for an iterative solution
- Infrared divergences to all orders and resummed
 [Caron-Huot, Gardi, Reichel, Vernazza '17]

$$\mathcal{M}_{[1]}^{\mathrm{NLL},(+)} = \frac{i\pi}{R(\epsilon) - 1} \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n L^{n-1} \left(C_A \alpha_g^{(1)}\right)^n + \mathcal{O}(\epsilon^0)$$

* Finite terms known to arbitrary order (resummation unknown)

[Caron-Huot, Gardi, Reichel, Vernazza '20]





NNLL Real

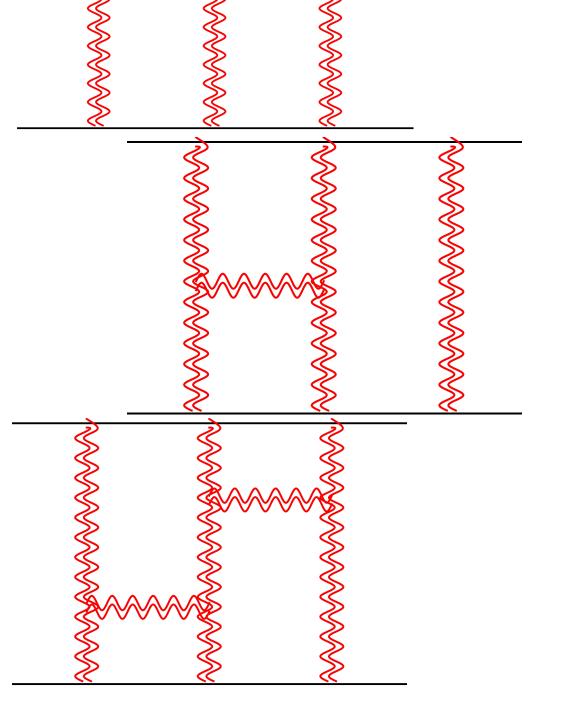
* Regge factorisation breaks, need to add a term as a new channel opens up

$$\mathcal{M}^{\text{NNLL},(-)} = C_i(t)C_j(t)e^{C_A\alpha_g(t,\mu^2)L}\mathcal{M}^{\text{tree}} + \mathcal{M}^{\text{NNLL},(-),\text{NF}}$$

- * The new term can be accessed by Balitsky-JIMWLK [Caron-Huot '13] universal across gauge theories
- * Computations up to four loops for any scattered partons

[Caron-Huot, Gardi, Vernazza '17; Falcioni, Gardi, CM, Vernazza '20]

- * The four-loop is non-planar
- * Is this a Regge pole and Regge cut separation?



 $oldsymbol{10} \oplus oldsymbol{10}$

Regge Cuts

[Falcioni, Gardi, Maher, CM, Vernazza '21, PRL]

Let us see the NNLL amplitude at two loops

$$\mathcal{M}^{(-,2,0)} = \left(C_i^{(2)} + C_j^{(2)} + C_i^{(1)}C_j^{(1)}\right)\mathcal{M}^{\text{tree}} + \mathcal{M}^{(-,2,0),\text{NF}}$$

- * Free to move terms that are in 8a from the extra term into a new definition of the impact factors
- What criteria do we have? Regge cuts are non-planar [Mandelstam '63]
- Move all planar contributions into impact factors and Regge trajectory

$$\mathcal{M}^{\text{NNLL},(-)} = \left(C_i(t) C_j(t) e^{C_A \alpha_g L} \mathcal{M}^{\text{tree}} + \mathcal{M}^{\text{NNLL},(-),\text{NF}}|_{\text{planar}} \right) + \mathcal{M}^{\text{NNLL},(-),\text{NF}}|_{\text{non-planar}}$$

$$= \tilde{C}_i(t) \tilde{C}_j(t) e^{C_A \tilde{\alpha}_g L} \mathcal{M}^{\text{tree}} + \mathcal{M}^{\text{NNLL},(-),\text{NF}}|_{\text{non-planar}}$$

* Gives a perturbative description of the Regge pole and Regge cut separation

Recent Progress

Matching to fixed order computations we can find pole parameters at NNLL

[Ahmed, Henn, Mistlberger '19; Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21]

* Three-loop Regge trajectory which has the expected infrared structure

[Falcioni, Gardi, Maher, CM, Vernazza '21, PRL; see also Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21]

[Korchemskaya, Korchemsky '94, '96]

- * Two-loop impact factors at higher orders in ϵ
- High-energy limits constrain infrared singularities through four loops

[Caron-Huot '13; Falcioni, Gardi, Maher, CM, Vernazza '21]

Useful in bootstrapping the full structure in general kinematics

[Almelid, Duhr, Gardi, McLeod, White '17]

Summary

		Real	Imaginary
LL $lpha_s^n L^n$	$\alpha_g^{(1)}$	one-loop Regge trajectory	
NLL $\alpha_s^n L^{n-1}$	$C_i^{(1)}(t)$ $\alpha_g^{(2)}$ $C_j^{(1)}(t)$	two-loop Regge trajectory one-loop impact factors	infrared divergences resummed finite terms to arbitrary order resummation unknown
NNLL $\alpha_s^n L^{n-2}$	$C_i^{(2)}(t)$ $\alpha_g^{(3)}$ $C_j^{(2)}(t)$	four loops explicit calculation	Not yet developed

Outlook

- * Resum full imaginary amplitude at NLL
 - * Interpretation in the complex angular momentum plane?
- * Five-loop and beyond for the real NNLL
- Understand imaginary part at NNLL
- * 2 -> 3 amplitudes
 - * Significant interest for fixed order computations
 - * How to organise? What can we extract? Phenomenological uses?

Outlook

- * Resum full imaginary amplitude at NLL
 - * Interpretation in the complex angular momentum plane?
- * Five-loop and beyond for the real NNLL
- Understand imaginary part at NNLL
- * 2 -> 3 amplitudes
 - * Significant interest for fixed order computations
 - * How to organise? What can we extract? Phenomenological uses?

Backup slides

Formulating highly energetic partons as Wilson lines

[Caron-Huot '13; Caron-Huot, Gardi, Vernazza '17]

"eikonal approximation" $U(z_{\perp}) = \mathbf{P} \exp \left[ig_s \mathbf{T}^a \int_{-\infty}^{\infty} dx^+ A_+^a(x^+, x^- = 0, z_{\perp}) \right]$

regulate rapidity divergences by tilting Wilson-line off the light cone

$$\eta = \frac{1}{2} \log \frac{p_+}{p_-}$$

$$\eta = rac{1}{2} \log rac{p_+}{p_-}$$

$$T_{i,L}^a = \left[\mathbf{T}^a U(z_i)\right] rac{\delta}{\delta U(z_i)}$$

$$T_{i,R}^a = \left[U(z_i)\mathbf{T}^a\right] rac{\delta}{\delta U(z_i)}$$

our parton is a collection

$$\frac{a}{dn} |\psi_i\rangle = -H |\psi_i\rangle$$

$$H = \frac{\alpha_s}{2\pi^2} \int d^d z_i d^d z_j d^d z_0 \frac{z_{0i} \cdot z_{0j}}{(z_{0i}^2 z_{0j}^2)^{1-\epsilon}} \left\{ T_{i,L}^a T_{j,L}^a \right\}$$

of such Wilson lines
$$\frac{d}{d\eta} |\psi_i\rangle = -H |\psi_i\rangle \qquad H = \frac{\alpha_s}{2\pi^2} \int d^dz_i d^dz_j d^dz_0 \frac{z_{0i} \cdot z_{0j}}{(z_{0i}^2 z_{0j}^2)^{1-\epsilon}} \left\{ T_{i,L}^a T_{j,L}^a + T_{i,R}^a T_{j,R}^a - U_{\rm ad}^{ab}(z_0) \left(T_{i,L}^a T_{j,R}^b + T_{j,L}^a T_{i,R}^b \right) \right\}$$

The amplitude is then written as
$$\, {\cal M}_{ij o ij} \sim {}^{\rm Target}_{\langle \psi_j | e^{-HL} | \psi_i \rangle} \,$$

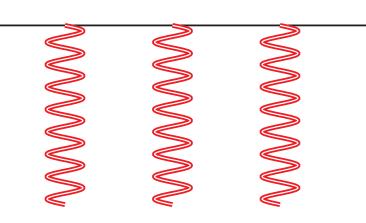
$$\psi_j|_e - HL |\psi_i
angle$$

Evolve so that they are at equal rapidity

Target and projectile separated by some $z_1^2 \leftrightarrow t$

Reggeon field Expand Wilson line in Reggeons

$$U = \exp\left[ig_s\mathbf{T}^aW^a\right] \sim$$



Only odd/even number of Reggeons contribute to the odd/even amplitude

Explicit momentum-space Hamiltonians

The diagonal transitions are

dresses one Reggeon with the trajectory

$$H_{k\to k} = -\int d^d p \, C_A \alpha_g(p) W^a(p) \frac{\delta}{\delta W^a(p)} + \alpha_s \int d^d q d^d p_1 d^d p_2 \, H_{22}(q; p_1, p_2) W^x(p_1 + q) W^y(p_2 - q) (F^x F^y)^{ab} \frac{\delta}{\delta W^a(p_1)} \frac{\delta}{\delta W^b(p_1)}$$

with kernel
$$H_{22}(q;p_1,p_2)=\frac{(p_1+p_2)^2}{p_1^2p_2^2}-\frac{(p_1+q)^2}{p_1^2q^2}-\frac{(p_2-q)^2}{q^2p_2^2}$$

adds a *rung* between two Reggeons

Source of the difficulty at NNLL.
Three Reggeons spoil the symmetry between colour and kinematics, which is there for two Reggeons (NLL).

The off-diagonal transitions are

$$H_{1\to 3} = \alpha_s^2 \int d^d p_1 d^d p_2 d^d p \text{ tr} \left[F^a F^b F^c F^d \right] W^b(p_1) W^c(p_2) W^d(p_3) H_{13}(p_1, p_2, p_3) \frac{\delta}{\delta W^a(p)}$$

with kernel
$$H_{13}(p_1,p_2,p_3) = \frac{r_{\Gamma}}{3\epsilon} \left[\left(\frac{\mu^2}{(p_1+p_2+p_3)^2} \right)^{\epsilon} + \left(\frac{\mu^2}{p_2^2} \right)^{\epsilon} - \left(\frac{\mu^2}{(p_1+p_2)^2} \right)^{\epsilon} - \left(\frac{\mu^2}{(p_2+p_3)^2} \right)^{\epsilon} \right]$$