A parton branching algorithm with transverse momentum dependent splitting functions

Ola Lelek, F. Hautmann, M. Hentschinski, L. Keersmaekers, A. Kusina, K. Kutak

$$
\text { Diffraction and Low-x } 2022
$$

Motivation

■ Monte Carlo (MC) generators crucial for HEP predictions
■ MC developments to reach high precision in HL LHC, LHeC, FCC, EIC...

- Baseline MCs based on collinear factorization but collinear physics has limitations
- Hot topic: 3D hadron structure
- recently new developments to include TMD physics in MCs
- MCs based on parton branching algorithms Today: parton branching with transverse momentum dependent (TMD) splitting functions (never explored so far!) [arXiv:2205.15873]

Image: James LaPlante/Sputnik Animation, MIT CAST \& Jefferson Lab

Setting up the scene

Two elements which come together:
■ TMD splitting functions, defined from the high-energy limit of partonic decay amplitudes
■ Flexible parton branching algorithm, allowing to incorporate them: the TMD Parton Branching (PB) method [arXiv:1704.01757, arXiv:1708.03279]
first step towards a full TMD MC generator covering the small-x phase space.

A parton branching: basic concepts

- QCD: partons undergo an evolution
- DGLAP: Change of the PDF with the scale μ^{2}
- DGLAP splitting functions $P_{a b}\left(z, \mu^{2}\right)$:
probability ${ }^{\star}$ that $b \rightarrow a$
$\begin{array}{cc}\text { real branchings } & \text { virtual } \\ P_{a b}^{R} & P_{a}^{V}\end{array}$

Unitarity: $\quad \mathbb{P}_{\mathrm{E}}+\mathbb{P}_{\mathrm{NE}}=1$
$\mathbb{P}_{\text {NE }}$ can be expressed in terms of \mathbb{P}_{E} by exponentiating (Sudakov form factor)
$\mathbb{P}_{\mathrm{NE}}\left(\mu^{2}, \mu_{0}^{2}\right)=\exp \left(-\int_{\mu_{0}^{2}}^{\mu^{2}} \mathrm{~d} \mu^{\prime 2} \frac{\mathrm{~d} \mathbb{P}_{\mathrm{E}}\left(\mu^{\prime 2}\right)}{\mathrm{d} \mu^{\prime 2}}\right)$

[^0]
A parton branching for DGLAP evolution

Representation of branching
by paths in (t, x) space.
From QCD and collider Physics.

$$
\mu^{2} \frac{\widetilde{\mathrm{~d} f_{a}\left(x, \mu^{2}\right)}}{\mathrm{d} \mu^{2}}=\underbrace{\sum_{b}^{1} \int_{x}^{\mathrm{d} z P_{a b}^{R}\left(\mu^{2}, z\right) \tilde{f}_{b}\left(\begin{array}{c}
x \\
- \\
z
\end{array} \mu^{2}\right)}-\widetilde{f}_{a}\left(x, \mu^{2}\right) \underbrace{\int_{0}^{1}}_{\text {virtual/non-resolvable }} \mathrm{d} z P_{a}^{V}\left(\mu^{2}, z\right)}_{\text {real emissions }}
$$

Momentum sum rule:
$\sum_{a} \int_{0}^{1} \mathrm{~d} \times x f_{a}\left(x, \mu^{2}\right)=1 \rightarrow \sum_{a} \int_{0}^{1} \mathrm{~d} z z P_{a b}\left(z, \mu^{2}\right)=0$
Momentum sum rule allows to rewrite evolution in terms of P^{R} :
$\mu^{2} \frac{\widetilde{\mathrm{~d} f_{a}\left(x, \mu^{2}\right)}}{\mathrm{d} \mu^{2}}=\sum_{b} \int_{x}^{1} \mathrm{~d} z P_{a b}^{R}\left(\mu^{2}, z\right) \widetilde{f_{b}}\left(\frac{x}{z}, \mu^{2}\right)-\widetilde{f_{a}}\left(x, \mu^{2}\right) \sum_{b} \int_{0}^{1} \mathrm{~d} z z P_{b a}^{R}\left(\mu^{2}, z\right)$
\Longleftrightarrow sum rule allows to fix the exact form of virtual piece
\qquad

A parton branching for DGLAP evolution

Representation of branching

$$
\text { by paths in }(t, x) \text { space. }
$$

From QCD and collider Physics.

$$
\mu^{2} \frac{\widetilde{\mathrm{~d} f_{a}\left(x, \mu^{2}\right)}}{\mathrm{d} \mu^{2}}=\underbrace{\sum_{b}^{1} \int_{x}^{1} \mathrm{~d} z P_{a b}^{R}\left(\mu^{2}, z\right) \widetilde{f_{b}}\left(\begin{array}{c}
x \\
- \\
z
\end{array} \mu^{2}\right)}_{\text {real emissions }}-\underbrace{\widetilde{f}_{a}\left(x, \mu^{2}\right) \int_{\int_{0}^{1}}^{\int_{\mathrm{d}} P_{a}^{V}\left(\mu^{2}, z\right)}}_{\text {virtual/non-resolvable }}
$$

Momentum sum rule:
$\sum_{a} \int_{0}^{1} \mathrm{~d} x x f_{a}\left(x, \mu^{2}\right)=1 \rightarrow \sum_{a} \int_{0}^{1} \mathrm{~d} z z P_{a b}\left(z, \mu^{2}\right)=0$
Momentum sum rule allows to rewrite evolution in terms of P^{R} :
$\mu^{2} \frac{\widetilde{\mathrm{~d} f}\left(x, \mu^{2}\right)}{\mathrm{d} \mu^{2}}=\sum_{b} \int_{x}^{1} \mathrm{~d} z P_{a b}^{R}\left(\mu^{2}, z\right) \widetilde{f_{b}}\left(\frac{x}{z}, \mu^{2}\right)-\widetilde{f}_{a}\left(x, \mu^{2}\right) \sum_{b} \int_{0}^{1} \mathrm{~d} z z P_{b a}^{R}\left(\mu^{2}, z\right)$
\Longleftrightarrow sum rule allows to fix the exact form of virtual piece
one can introduce Sudakov form factor *
$\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} \mathrm{~d} z z P_{b a}^{R}\left(z, \mu^{2}\right)\right)$
to rewrite:
$\widetilde{f}_{a}\left(x, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{f}_{a}\left(x, \mu_{0}^{2}\right)+\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}} \Delta_{a}\left(\mu^{2}, \mu^{\prime 2}\right) \int_{x}^{z_{M}} \mathrm{~d} z z P_{a b}^{R}\left(z, \mu^{\prime 2}\right) \widetilde{f}_{b}\left(\frac{x}{z}, \mu^{\prime 2}\right)$
Simple intuitive probabilistic interpretation of an evolution structure easy to solve by Monte Carlo (MC) techniques
$\widetilde{f}=x f, \quad\left(x / x_{1}=z\right)$

* soft gluon resolution scale z_{M} introduced to treat non-resolvable branchings, partons with $z>z_{M}$ non-resolvable

The TMD Parton Branching (PB) method

a, x \qquad
b, $x_{1}=x_{0}, \mu_{0} \mu$
c, $\mathrm{c}_{2}=\mathrm{x}_{0} \mu$

DGLAP evolution is collinear
TMD PB method extends it to the transverse momentum dependent (TMD) PDFs (TMDs) case

$$
\begin{aligned}
& \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu_{0}^{2}\right)+\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp 1}}{\pi \mu_{\perp 1}^{2}} \Theta\left(\mu_{\perp 1}^{2}-\mu_{0}^{2}\right) \Theta\left(\mu^{2}-\mu_{\perp 1}^{2}\right) \\
& \times \Delta_{a}\left(\mu^{2}, \mu_{\perp 1}^{2}\right) \int_{x}^{z_{M}} \mathrm{~d} z P_{a b}^{R}\left(z, \mu_{\perp 1}^{2}\right) \widetilde{A}_{b}\left(\frac{x}{z},\left|k_{\perp}+(1-z) \mu_{\perp 1}\right|^{2}, \mu_{\perp 0}^{2}\right) \Delta_{b}\left(\mu_{\perp 1}^{2}, \mu_{\perp 0}^{2}\right)+\ldots
\end{aligned}
$$

k of the propagating parton is a sum of intrinsic transverse momentum and all emitted transverse momenta $\mathbf{k}=\mathbf{k}_{0}-\sum \mathbf{q}_{i} \rightarrow$ TMDs from branchings ! collinear RDF from IMD: $\int \mathrm{dk}_{\perp}^{2} \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu^{2}\right)$ in the limit $z_{M} \rightarrow 1 \& \alpha_{s}\left(\mu_{i}^{2}\right)$ DGLAP reproduced

Notice: $D^{R}\left(z, \|^{2}\right)$ stilT collinear \rightarrow netural eutension to include also the TMD splitting functions!

The TMD Parton Branching (PB) method

a, x \qquad
b, $x_{1}=x_{0}, \mu_{0}$
a, x

DGLAP evolution is collinear
TMD PB method extends it to the transverse momentum dependent (TMD) PDFs (TMDs) case

$$
\begin{aligned}
& \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu_{0}^{2}\right)+\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d^{2} \mu_{\perp 1}}{\pi \mu_{\perp 1}^{2}} \Theta^{2}\left(\mu_{\perp 1}^{2}-\mu_{0}^{2}\right) \Theta_{x}\left(\mu^{2}-\mu_{\perp 1}^{2}\right) \\
& \times \Delta_{a}\left(\mu^{2}, \mu_{\perp 1}^{2}\right) \int_{a b}^{R}\left(z, \mu_{\perp 1}^{2}\right) \widetilde{A}_{b}\left(\frac{x}{z},\left|k_{\perp}+(1-z) \mu_{\perp 1}\right|^{2}, \mu_{\perp 0}^{2}\right) \Delta_{b}\left(\mu_{\perp 1}^{2}, \mu_{\perp 0}^{2}\right)+\ldots
\end{aligned}
$$

\mathbf{k} of the propagating parton is a sum of intrinsic transverse momentum and all emitted transverse momenta $\mathbf{k}=\mathbf{k}_{0}-\sum_{i} \mathrm{q}_{i} \rightarrow$ TMDs from branchings!
collinear PDF from TMD: $\int \mathrm{d} k_{\perp}^{2}{\widetilde{A_{a}}}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right)=\widetilde{f}_{a}\left(x, \mu^{2}\right)$
in the limit $z_{M} \rightarrow 1 \& \alpha_{s}\left(\mu_{i}^{2}\right)$ DGLAP reproduced
Notice: $\quad P^{R}\left(z, \mu^{2}\right)$ still collinear \rightarrow natural extension to include also the TMD splitting functions!
$\widetilde{A}=x A$

The TMD PB method: more than just parton branching

- evolution equation
flexibility! different scenarios studied
(e.g. ordering conditions, resolution scales [1704.01757, 2103.09741, 1908.08524])

■ fit procedure to obtain parameters of the initial distribution (xFitter [1410.4412])
■ PB TMDs and PDFs [1804.11152, 2106.09791, 2102.01494] available in TMDlib [2103.09741] and LHAPDF format
to be used in (TMD) MC generators,
e.g. TMD MC generator Cascade [2101.10221]

TMD initial state parton shower, with the backward shower guided by the PB TMDs
■ matching method to match PB TMDs with NLO ME [1906.00919]

- TMD merging [2107.01224]
- example of applications to measurements:

DY process at LHC [1906.00919]
DY process at low masses and energies [2001.06488]
DY + jets [2204.01528]
jets [2112.10465]
lepton-jet correlations in DIS [2108.12376]
Notice applicability both at low and high p_{\perp} (TMD effects at high p_{\perp} !)

- theory: ongoing comparison with standard low q_{\perp} resummation methods (CSS) [2108.04099, 2206.01105]
- ...

The TMD PB method: flexible, widely applicable MC approach to obtain QCD high energy predictions based on TMDs

TMD splitting functions

- Concept from high-energy factorization [hep-ph/9405388]
$k_{\perp}-$ factorization for DIS:
$F^{0}\left(x, Q^{2}\right)=\int[\mathrm{d} \mathbf{k}] \int \frac{\mathrm{d} z}{z} \hat{\sigma}\left(z, \mathbf{k}, Q^{2}, \mu\right) G^{0}\left(\frac{x}{z}, \mathbf{k}, \mu\right)$
G^{0} - solution of BFKL equation

- originally TMD Pqg calculated
$P_{q g}\left(\alpha_{s}, z, k_{\perp}^{\prime}, \tilde{q}_{\perp}\right)=$
$\frac{\alpha_{s} T_{F}}{2 \pi} \frac{\tilde{q}_{\perp}^{2} z(1-z)}{\left(\tilde{q}_{\perp}^{2}+z(1-z) k_{\perp}^{\prime 2}\right)^{2}}\left[\frac{\tilde{q}_{\perp}^{2}}{z(1-z)}+4(1-2 z) \tilde{q}_{\perp} \cdot k_{\perp}^{\prime}-4 \frac{\left(\tilde{q}_{\perp} \cdot k_{\perp}^{\prime}\right)^{2}}{k_{\perp}^{\prime 2}}+4 z(1-z) k_{\perp}^{\prime 2}\right]$
where $\tilde{q}_{\perp}=k_{\perp}-z k_{\perp}^{\prime}$

> Properties:

- well defined collinear and high energy limits:
- for $k_{\perp}^{\prime 2} \ll k_{\perp}^{2}$, after angular average: TMD $P_{q g}{ }^{+} \rightarrow$ LO DGLAP $P_{q g}$
- for finite $k_{\perp}^{\prime 2}, k_{\perp}^{\prime 2} \sim \mathcal{O}\left(k_{\perp}^{2}\right)$:
expansion in $\left(k_{\perp}^{\prime 2} / \tilde{q}_{\perp}^{2}\right)^{n}$, with z-dependent coefficients
resummation of $\ln \frac{1}{z}$ at all orders in α_{s} via
convolution with TMD gluon Green's functions
- positive definite

Other channels calculated in [1511.08439, 1607.01507, 1711.04587]
virtual pieces still missing

TMD PB method and TMD P

Idea: replace DGLAP P by TMD P
What to do with the Sudakov form factor?

$$
\begin{aligned}
\widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right)= & \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu_{0}^{2}\right)+ \\
& \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d}^{2} \mu_{\perp 1}}{\pi \mu_{\perp 1}^{2}} \Theta\left(\mu_{\perp 1}^{2}-\mu_{0}^{2}\right) \Theta\left(\mu^{2}-\mu_{\perp 1}^{2}\right) \Delta_{a}\left(\mu^{2}, \mu_{\perp 1}^{2}\right) \\
& \times \int_{x}^{z_{M}} \mathrm{~d} z P_{a b}^{R}\left(z, k_{\perp}+(1-z) \mu \perp 1, \mu \perp 1\right) \widetilde{A}_{b}\left(\frac{x}{z},\left|k_{\perp}+(1-z) \mu \perp 1\right|^{2}, \mu_{\perp 1}^{2}\right)
\end{aligned}
$$

Two models investigated:

- with collinear Sudakov $\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)$, i.e. TMD P in real splittings only
- with newly constructed TMD Sudakov

$$
\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \rightarrow \Delta_{a}\left(\mu^{2}, \mu_{\perp 1}^{2}, k_{\perp}^{2},\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} \mathrm{~d} z z \bar{P}_{b a}^{R}\left(z, k_{\perp}^{2}, \mu^{\prime 2}\right)\right)
$$

\bar{P} - angular averaged P

momentum sum rule \& unitarity allowed us to construct the missing virtual term i.e. we demonstrated analytically that with TMD Sudakov form factor momentum sum rule is satisfied and with collinear Sudakov it's broken

TMDs and PDFs

[2205.15873]

- for the study, the same starting distribution was used for all scenarios: collinear P, TMD real emissions, collinear Sudakov,
TMD P both in real emissions and Sudakov
- the effect of the TMD splitting functions visible both in TMD and iTMD distributions

■ iTMDs: significant differences, especially in the low x

- TMDs: effects in the whole k_{\perp} range
- Red and purple curve obey momentum sum rule, differences due to dynamical effects in the splitting functions
- Blue curve violates momentum sum rule

Momentum sum rule check

	Full Result				
$\mu^{2}\left(\mathrm{GeV}^{2}\right)$	$\alpha_{s}\left(\mu^{2}\right)$, fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, dyn. z_{M}		
3	1.000	1.000	1.000		
10	0.999	0.999	0.999		
10^{2}	0.997	0.996	0.997		
10^{3}	0.994	0.992	0.994		
10^{4}	0.991	0.987	0.991		
10^{5}	0.984	0.978	0.983		
	TMD-Resolvable				
$\mu^{2}\left(\mathrm{GeV}^{2}\right)$	$\alpha_{s}\left(\mu^{2}\right)$, fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, dyn. z_{M}		
3	1.029	1.038	1.000		
10	1.087	1.139	1.007		
10^{2}	1.156	1.304	1.045		
10^{3}	1.195	1.413	1.091		
10^{4}	1.219	1.478	1.129		
10^{5}	1.229	1.507	1.148		
$\mu^{2}\left(\mathrm{GeV}^{2}\right)$	Collinear Kernels				
3	$\alpha_{s}\left(\mu^{2}\right)$ fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, fix. z_{M}	$\alpha_{s}\left(q_{\perp}^{2}\right)$, dyn. z_{M}		
10	1.000	1.000	1.000		
10^{2}	0.999	0.999	0.999		
10^{3}	0.997	0.997	0.997		
10^{4}	0.995	0.993	0.995		
10^{5}	0.992	0.989	0.992		
	0.986	0.981	0.984		

In the table:
$\sum_{a} \int_{x_{0}}^{1} \mathrm{~d} x \int \mathrm{~d} k_{\perp}^{2} \widetilde{A}\left(x, k^{2} \perp, \mu^{2}\right), \quad$ with $x_{0}=10^{-5}$

[^1]
Conclusions \& Prospects

a parton branching algorithm to TMDs and PDFs which for the first time includes TMD splitting functions and fulfils momentum sum rule

- the TMD splitting functions, defined from the high-energy limit of partonic decay processes, with well defined collinear and high energy limits
- TMD splitting functions \longleftrightarrow resummation $\ln \frac{1}{z}$
- new TMD Sudakov form factor thanks to momentum sum rule and unitarity

Studies presented today for forward evolution but it's the first step towards a full TMD MC generator covering the small-x phase space.
next steps:

- fits
- implement in PS: Cascade - perfect candidate
Other directions: further develop evolution equation
- extend formalism to CCFM-inspired scenarios (phase space, non-sudakov form factor)

Thank you!

[^0]: $\mathbb{P}_{\mathrm{E}}\left(\mathbb{P}_{\text {NE }}\right)$ - Probability of (no) emission

 * probabilistic interpretation valid at Lo

[^1]: The three columns: three different boundary conditions on α_{s} and z_{M}

