A parton branching algorithm with transverse momentum dependent splitting functions

Ola Lelek, F. Hautmann, M. Hentschinski, L. Keersmaekers, A. Kusina, K. Kutak

Diffraction and Low-x 2022

Motivation

- Monte Carlo (MC) generators crucial for HEP predictions
- MC developments to reach high precision in HL LHC, LHeC, FCC, EIC...
- Baseline MCs based on collinear factorization but collinear physics has limitations
- Hot topic: 3D hadron structure
- recently new developments to include TMD physics in MCs
- MCs based on parton branching algorithms
 Today: parton branching with transverse momentum dependent(TMD) splitting
 functions (never explored so far!) [arXiv:2205.15873]

Image: James LaPlante/Sputnik Animation, MIT CAST & Jefferson Lab

Setting up the scene

Two elements which come together:

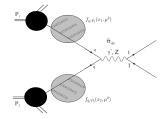
- TMD splitting functions, defined from the high-energy limit of partonic decay amplitudes
- Flexible parton branching algorithm, allowing to incorporate them: the TMD Parton Branching (PB) method [arXiv:1704.01757,arXiv:1708.03279]

first step towards a full TMD MC generator covering the small-x phase space.

A parton branching: basic concepts

- DGLAP: Change of the PDF with the scale μ^2
- DGLAP splitting functions $P_{ab}(z, \mu^2)$: probability* that $b \rightarrow a$

real branchings + virtual contributions (loops) P'



Unitarity:
$$\mathbb{P}_{E} + \mathbb{P}_{NE} = 1$$

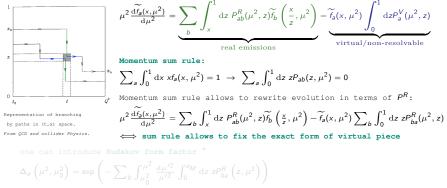
 \mathbb{P}_{NE} can be expressed in terms of \mathbb{P}_{E} by exponentiating (Sudakov form factor)

$$\mathbb{P}_{\rm NE}\left(\mu^2,\mu_0^2\right) = \exp\left(-\int_{\mu_0^2}^{\mu^2} \mathrm{d}\mu'^2 \frac{\mathrm{d}\mathbb{P}_{\rm E}(\mu'^2)}{\mathrm{d}\mu'^2}\right)$$

 $[\]mathbb{P}_{\mathbf{E}}(\mathbb{P}_{N\mathbf{E}})$ - Probability of (no)emission

^{*} probabilistic interpretation valid at LO

A parton branching for DGLAP evolution



to rewrite:

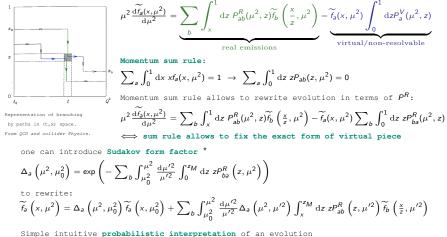
$$\widetilde{f_a}\left(\mathbf{x},\mu^2\right) = \Delta_a\left(\mu^2,\mu_0^2\right)\widetilde{f_a}\left(\mathbf{x},\mu_0^2\right) + \sum_b \int_{\mu_0^2}^{\mu^2} \frac{\mathrm{d}\mu'^2}{\mu'^2} \Delta_a\left(\mu^2,\mu'^2\right) \int_x^{z_M} \mathrm{d}z \; z \mathsf{P}_{ab}^R\left(z,\mu'^2\right) \widetilde{f_b}$$

Simple intuitive **probabilistic interpretation** of an evolutior structure easy to **solve by Monte Carlo** (MC) techniques

 $f = xf, \ (x/x_1 = z)$

soft gluon resolution scale z_M introduced to treat non-resolvable branchings, partons with $z > z_M$ non-resolvable

A parton branching for DGLAP evolution



structure easy to solve by Monte Carlo (MC) techniques

 $\widetilde{f} = xf$, $(x/x_1 = z)$

 $^{^{*}}$ soft fluon resolution scale z_{M} introduced to treat non-resolvable branchings, partons with $z>z_{M}$ non-resolvable

The TMD Parton Branching (PB) method

DGLAP evolution is collinear TMD PB method extends it to the transverse momentum dependent (TMD) PDFs (TMDs) case

$$\begin{split} \widetilde{A}_{a}\left(x,k_{\perp}^{2},\mu^{2}\right) &= \Delta_{a}\left(\mu^{2},\mu_{0}^{2}\right)\widetilde{A}_{a}\left(x,k_{\perp}^{2},\mu_{0}^{2}\right) + \sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{d}^{2}\mu_{\perp1}}{\pi\mu_{\perp1}^{2}}\Theta\left(\mu_{\perp1}^{2}-\mu_{0}^{2}\right)\Theta\left(\mu^{2}-\mu_{\perp1}^{2}\right) \\ &\times \Delta_{a}\left(\mu^{2},\mu_{\perp1}^{2}\right)\int_{x}^{z_{M}} \mathrm{d}zP_{ab}^{R}\left(z,\mu_{\perp1}^{2}\right)\widetilde{A}_{b}\left(\frac{x}{z},|k_{\perp}+(1-z)\mu_{\perp1}|^{2},\mu_{\perp0}^{2}\right)\Delta_{b}\left(\mu_{\perp1}^{2},\mu_{\perp0}^{2}\right) + \dots \end{split}$$

The TMD Parton Branching (PB) method

DGLAP evolution is collinear TMD PB method extends it to the transverse momentum dependent (TMD) PDFs (TMDs) case

$$\begin{split} \widetilde{A}_{a}\left(x,k_{\perp}^{2},\mu^{2}\right) &= \Delta_{a}\left(\mu^{2},\mu_{0}^{2}\right)\widetilde{A}_{a}\left(x,k_{\perp}^{2},\mu_{0}^{2}\right) + \sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{\mathrm{d}^{2}\mu_{\perp1}}{\pi\mu_{\perp1}^{2}}\Theta\left(\mu_{\perp1}^{2}-\mu_{0}^{2}\right)\Theta\left(\mu^{2}-\mu_{\perp1}^{2}\right) \\ &\times \Delta_{a}\left(\mu^{2},\mu_{\perp1}^{2}\right)\int_{x}^{z_{M}} \mathrm{d}zP_{ab}^{R}\left(z,\mu_{\perp1}^{2}\right)\widetilde{A}_{b}\left(\frac{x}{z},|k_{\perp}+(1-z)\mu_{\perp1}|^{2},\mu_{\perp0}^{2}\right)\Delta_{b}\left(\mu_{\perp1}^{2},\mu_{\perp0}^{2}\right) + \dots \end{split}$$

k of the propagating parton is a sum of intrinsic transverse momentum and **all emitted** transverse momenta $\mathbf{k} = \mathbf{k}_0 - \sum_i \mathbf{q}_i \rightarrow \text{TMDs from branchings!}$ collinear PDF from TMD: $\int dk_{\perp}^{2} \widetilde{A}_{a}\left(x, k_{\perp}^{2}, \mu^{2}\right) = \widetilde{f}_{a}\left(x, \mu^{2}\right)$ in the limit $z_M \to 1$ & $\alpha_s(\mu_i^2)$ DGLAP reproduced Notice: $P^{R}(z, \mu^{2})$ still collinear \rightarrow natural extension to include also the TMD splitting functions!

The TMD PB method: more than just parton branching

evolution equation

```
flexibility! different scenarios studied
(e.g. ordering conditions, resolution scales [1704.01757, 2103.09741,
1908.08524])
```

- **fit** procedure to obtain parameters of the initial distribution (xFitter [1410.4412])
- PB TMDs and PDFs [1804.11152, 2106.09791, 2102.01494] available in TMDlib [2103.09741] and LHAPDF format to be used in (TMD) MC generators, e.g. TMD MC generator Cascade [2101.10221] TMD initial state parton shower, with the backward shower guided by the PB TMDs
- matching method to match PB TMDs with NLO ME [1906.00919]
- TMD merging [2107.01224]
- example of applications to measurements: DY process at LHC [1906.00919] DY process at low masses and energies [2001.06488] DY + jets [2204.01528] jets [2112.10465] lepton-jet correlations in DIS [2108.12376] Notice applicability both at low and high p_{\perp} (TMD effects at high p_{\perp} !)
- theory: ongoing comparison with standard low q₁ resummation methods (CSS) [2108.04099, 2206.01105]

. . . .

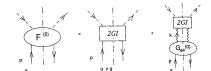
The TMD PB method: flexible, widely applicable MC approach to obtain QCD high energy predictions based on TMDs

TMD splitting functions

- Concept from high-energy factorization [hep-ph/9405388]
 - k _ factorization for DIS:

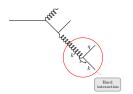
$$F^{0}(x, Q^{2}) = \int [d\mathbf{k}] \int \frac{dz}{z} \hat{\sigma}(z, \mathbf{k}, Q^{2}, \mu) G^{0}\left(\frac{x}{z}, \mathbf{k}, \mu\right)$$

originally TMD Pqg calculated



$$\begin{split} & \mathcal{P}_{qg}\left(\alpha_{s}, z, k_{\perp}^{\prime}, \tilde{q}_{\perp}\right) = \\ & \frac{\alpha_{s}\tau_{F}}{2\pi} \frac{\tilde{q}_{\perp}^{2} z(1-z)}{(\tilde{q}_{\perp}^{2} + z(1-z)k_{\perp}^{\prime})^{2}} \left[\frac{\tilde{q}_{\perp}^{2}}{z(1-z)} + 4(1-2z)\tilde{q}_{\perp} \cdot k_{\perp}^{\prime} - 4\frac{(\tilde{q}_{\perp} \cdot k_{\perp}^{\prime})^{2}}{k_{\perp}^{\prime2}} + 4z(1-z)k_{\perp}^{\prime2} \right] \\ & \text{where } \tilde{q}_{\perp} = k_{\perp} - zk_{\perp}^{\prime} \end{split}$$

Properties:



well defined collinear and high energy limits: - for $k_{\perp}'^2 \ll k_{\perp}^2$, after angular average: TMD $P_{qg} \to$ LO DGLAP P_{qg} - for finite $k_{\perp}^{\prime 2}$, $k_{\perp}^{\prime 2} \sim \mathcal{O}(k_{\perp}^2)$: expansion in $(k_\perp'^2/\tilde{q}_\perp^2)^n$, with z-dependent coefficients resummation of $\ln \frac{1}{7}$ at all orders in α_s via convolution with TMD gluon Green's functions positive definite

Other channels calculated in [1511.08439, 1607.01507, 1711.04587] virtual pieces still missing

 \widetilde{A}

[2205.15873]

TMD PB method and TMD P

Idea: replace DGLAP P by TMD P What to do with the Sudakov form factor?

$$\begin{split} s \left(x, k_{\perp}^{2}, \mu^{2} \right) &= \Delta_{\mathfrak{s}} \left(\mu^{2}, \mu_{0}^{2} \right) \widetilde{A}_{\mathfrak{s}} \left(x, k_{\perp}^{2}, \mu_{0}^{2} \right) + \\ & \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d^{2} \mu_{\perp 1}}{\pi \mu_{\perp 1}^{2}} \Theta \left(\mu_{\perp 1}^{2} - \mu_{0}^{2} \right) \Theta \left(\mu^{2} - \mu_{\perp 1}^{2} \right) \Delta_{\mathfrak{s}} \left(\mu^{2}, \mu_{\perp 1}^{2} \right) \\ & \times \int_{x}^{z_{M}} dz P_{ab}^{R} \left(z, k_{\perp} + (1 - z) \mu_{\perp 1}, \mu_{\perp 1} \right) \widetilde{A}_{b} \left(\frac{x}{z}, |k_{\perp} + (1 - z) \mu_{\perp 1}|^{2}, \mu_{\perp 1}^{2} \right) \end{split}$$

Two models investigated:

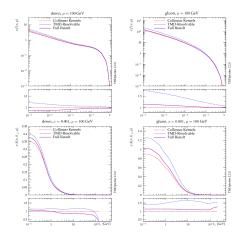
- with collinear Sudakov $\Delta_{a}\left(\mu^{2},\mu_{0}^{2}
 ight)$, i.e. TMD P in real splittings only
- with newly constructed TMD Sudakov

$$\Delta_{a}\left(\mu^{2},\mu_{0}^{2}\right) \rightarrow \Delta_{a}\left(\mu^{2},\mu_{\perp1}^{2},k_{\perp}^{2},\right) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{\mathrm{d}\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}\mathrm{d}z\,z\overline{P}_{ba}^{R}\left(z,k_{\perp}^{2},\mu'^{2}\right)\right)$$

\overline{P} - angular averaged P

momentum sum rule & unitarity allowed us to construct the missing virtual term i.e. we demonstrated analytically that with TMD Sudakov form factor momentum sum rule is satisfied and with collinear Sudakov it's broken

TMDs and PDFs



[2205.15873]

- for the study, the same starting distribution was used for all scenarios: collinear P, TMD real emissions, collinear Sudakov, TMD P both in real emissions and Sudakov
- the effect of the TMD splitting functions visible both in TMD and iTMD distributions
- iTMDs: significant differences, especially in the low x
- TMDs: effects in the whole k_{\perp} range
- Red and purple curve obey momentum sum rule, differences due to dynamical effects in the splitting functions
- Blue curve violates momentum sum rule

Eull Docult

Momentum sum rule check

[2205.15873]

	Full Result		
μ^2 (GeV ²)	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10 ²	0.997	0.996	0.997
10 ³	0.994	0.992	0.994
10^{4}	0.991	0.987	0.991
10 ⁵	0.984	0.978	0.983
	TMD-Resolvable		
μ^2 (GeV ²)	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_{\perp}^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.029	1.038	1.000
10	1.087	1.139	1.007
10^{2}	1.156	1.304	1.045
10 ³	1.195	1.413	1.091
104	1.219	1.478	1.129
10 ⁵	1.229	1.507	1.148
	Collinear Kernels		
μ^2 (GeV ²)	$\alpha_s(\mu^2)$ fix. z_M	$\alpha_s(q_{\perp}^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10^{2}	0.997	0.997	0.997
10 ³	0.995	0.993	0.995
10 ⁴	0.992	0.989	0.992
10 ⁵	0.986	0.981	0.984

In the table: $\sum_a \int_{x_0}^1 \mathrm{d}x \int \mathrm{d}k_\perp^2 \widetilde{A}(x,k^2\perp,\mu^2)$, with $x_0 = 10^{-5}$ The three columns: three different boundary conditions on α_s and z_M . Scenarios with the same splitting functions in real emissions and non-resolvable part fulfil momentum sum rule

Scenarios with TMD splitting functions in real emissions and collinear Sudakov form factor violate momentum sum rule

Conclusions & Prospects

a parton branching algorithm to TMDs and PDFs which for the first time includes TMD splitting functions and fulfils momentum sum rule

- the TMD splitting functions, defined from the high-energy limit of partonic decay processes, with well defined collinear and high energy limits
- TMD splitting functions → resummation ln 1/2
- new TMD Sudakov form factor thanks to momentum sum rule and unitarity

Studies presented today for forward evolution but it's the first step towards a full TMD MC generator covering the small-x phase space. next steps:

- fits
- implement in PS: Cascade - perfect candidate

Other directions: further develop evolution equation

 extend formalism to CCFM-inspired scenarios (phase space, non-sudakov form factor)

Thank you!