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Motivation

Monte Carlo (MC) generators crucial for HEP predictions

MC developments to reach high precision in HL LHC, LHeC, FCC, EIC...

Baseline MCs based on collinear factorization
but collinear physics has limitations

Hot topic: 3D hadron structure

recently new developments to include TMD physics in MCs

MCs based on parton branching algorithms
Today: parton branching with transverse momentum dependent(TMD) splitting
functions (never explored so far!) [arXiv:2205.15873]

Image: James LaPlante/Sputnik Animation, MIT CAST & Jefferson Lab
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Setting up the scene

Two elements which come together:

TMD splitting functions, defined from
the high-energy limit of partonic decay
amplitudes
Flexible parton branching algorithm,
allowing to incorporate them:
the TMD Parton Branching (PB) method
[arXiv:1704.01757,arXiv:1708.03279]

first step towards a full TMD MC generator
covering the small-x phase space.
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A parton branching: basic concepts

QCD: partons undergo an evolution

DGLAP: Change of the PDF with the scale µ2

DGLAP splitting functions Pab(z, µ2):
probability? that b → a

real branchings + virtual contributions (loops)
PR

ab PV
a

Unitarity: PE + PNE = 1

PNE can be expressed in terms of PE by exponentiating (Sudakov form factor)

PNE
(
µ2, µ2

0

)
= exp

(
−
∫ µ2

µ2
0

dµ′2 dPE(µ′2)
dµ′2

)
PE (PNE)- Probability of (no)emission
? probabilistic interpretation valid at LO
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A parton branching for DGLAP evolution

Representation of branching

by paths in (t,x) space.

From QCD and collider Physics.

µ2 d̃fa(x,µ2)
dµ2 =

∑
b

∫ 1

x

dz PR
ab(µ2

, z )̃fb

(
x
z
, µ

2
)

︸ ︷︷ ︸
real emissions

− f̃a(x, µ2)

∫ 1

0

dzPV
a (µ2

, z)︸ ︷︷ ︸
virtual/non-resolvable

Momentum sum rule:∑
a

∫ 1

0
dx xfa(x, µ2) = 1 →

∑
a

∫ 1

0
dz zPab(z, µ2) = 0

Momentum sum rule allows to rewrite evolution in terms of PR:

µ2 d̃fa(x,µ2)
dµ2 =

∑
b

∫ 1

x
dz PR

ab(µ2, z )̃fb
(

x
z , µ

2
)
− f̃a(x, µ2)

∑
b

∫ 1

0
dz zPR

ba(µ2, z)

⇐⇒ sum rule allows to fix the exact form of virtual piece

one can introduce Sudakov form factor ?

∆a
(
µ2, µ2

0

)
= exp

(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM
0

dz zPR
ba

(
z, µ2
))

to rewrite:

f̃a
(

x, µ2
)

= ∆a
(
µ2, µ2

0

)
f̃a
(

x, µ2
0

)
+
∑

b

∫ µ2

µ2
0

dµ′2

µ′2
∆a
(
µ2, µ′2

)∫ zM
x

dz zPR
ab

(
z, µ′2

)
f̃b
(

x
z , µ
′2
)

Simple intuitive probabilistic interpretation of an evolution
structure easy to solve by Monte Carlo (MC) techniques

f̃ = xf , (x/x1 = z)
? soft gluon resolution scale zM introduced to treat non-resolvable branchings, partons with z > zM non-resolvable
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The TMD Parton Branching (PB) method

DGLAP evolution is collinear
TMD PB method extends it to the transverse momentum dependent (TMD) PDFs (TMDs) case

Ãa
(

x, k2
⊥, µ

2
)

= ∆a
(
µ

2
, µ

2
0

)
Ãa
(

x, k2
⊥, µ

2
0

)
+
∑

b

∫ µ2

µ2
0

d2µ⊥1

πµ2
⊥1

Θ
(
µ

2
⊥1 − µ

2
0

)
Θ
(
µ

2 − µ2
⊥1

)
×∆a
(
µ

2
, µ

2
⊥1

)∫ zM

x

dzPR
ab

(
z, µ2
⊥1

)
Ãb

(
x
z
, |k⊥ + (1− z)µ⊥1|

2
, µ

2
⊥0

)
∆b
(
µ

2
⊥1, µ

2
⊥0

)
+ ...

k of the propagating parton is a sum of intrinsic transverse momentum and all emitted

transverse momenta k = k0 −
∑

i
qi → TMDs from branchings!

collinear PDF from TMD:
∫

dk2
⊥Ãa
(

x, k2
⊥, µ

2
)

= f̃a
(

x, µ2
)

in the limit zM → 1 & αs (µ2
i ) DGLAP reproduced

Notice: PR (z, µ2) still collinear → natural extension to include also the TMD
splitting functions!

Ã = xA
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2
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2
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The TMD PB method: more than just
parton branching

evolution equation
flexibility! different scenarios studied
(e.g. ordering conditions, resolution scales [1704.01757, 2103.09741,
1908.08524])

fit procedure to obtain parameters of the initial distribution (xFitter
[1410.4412])

PB TMDs and PDFs [1804.11152, 2106.09791, 2102.01494] available in TMDlib
[2103.09741] and LHAPDF format
to be used in (TMD) MC generators,
e.g. TMD MC generator Cascade [2101.10221]
TMD initial state parton shower, with the backward shower guided by the PB TMDs

matching method to match PB TMDs with NLO ME [1906.00919]

TMD merging [2107.01224]

example of applications to measurements:
DY process at LHC [1906.00919]
DY process at low masses and energies [2001.06488]
DY + jets [2204.01528]
jets [2112.10465]
lepton-jet correlations in DIS [2108.12376]
Notice applicability both at low and high p⊥ (TMD effects at high p⊥ ! )

theory: ongoing comparison with standard low q⊥ resummation methods (CSS)
[2108.04099, 2206.01105]

...

The TMD PB method: flexible, widely applicable MC approach to obtain QCD high energy
predictions based on TMDs
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TMD splitting functions

Concept from high-energy factorization
[hep-ph/9405388]

k⊥ - factorization for DIS:

F 0(x,Q2) =
∫

[dk]
∫

dz
z σ̂(z, k,Q2, µ)G0

(
x
z , k, µ

)
G0 - solution of BFKL equation

originally TMD Pqg calculated

Pqg
(
αs , z, k′⊥, q̃⊥

)
=

αs TF
2π

q̃2
⊥z(1−z)

(q̃2
⊥+z(1−z)k′2⊥)2

[
q̃2
⊥

z(1−z) + 4(1− 2z)q̃⊥ · k′⊥ − 4
(q̃⊥·k

′
⊥)2

k′2⊥
+ 4z(1− z)k′2⊥

]
where q̃⊥ = k⊥ − zk′⊥

k′

z

Hard
interaction

k

q

Properties:

well defined collinear and high energy limits:

- for k′2⊥ � k2
⊥, after angular average:

TMD Pqg → LO DGLAP Pqg

- for finite k′2⊥, k′2⊥ ∼ O(k2
⊥):

expansion in (k′2⊥/q̃2
⊥)n, with z-dependent coefficients

resummation of ln 1
z at all orders in αs via

convolution with TMD gluon Green’s functions

positive definite

Other channels calculated in [1511.08439, 1607.01507, 1711.04587]
virtual pieces still missing
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TMD PB method and TMD P
Idea: replace DGLAP P by TMD P [2205.15873]
What to do with the Sudakov form factor?

Ãa
(

x, k2
⊥, µ

2
)

= ∆a
(
µ

2
, µ

2
0

)
Ãa
(

x, k2
⊥, µ

2
0

)
+∑

b

∫ µ2

µ2
0

d2µ⊥1

πµ2
⊥1

Θ
(
µ

2
⊥1 − µ

2
0

)
Θ
(
µ

2 − µ2
⊥1

)
∆a
(
µ

2
, µ

2
⊥1

)
×

∫ zM

x

dzPR
ab (z, k⊥ + (1− z)µ⊥1, µ⊥1 )̃Ab

(
x
z
, |k⊥ + (1− z)µ⊥1|

2
, µ

2
⊥1

)
Two models investigated:

with collinear Sudakov ∆a
(
µ2, µ2

0

)
, i.e. TMD P in real splittings only

with newly constructed TMD Sudakov

∆a
(
µ

2
, µ

2
0

)
→ ∆a

(
µ

2
, µ

2
⊥1, k2

⊥,
)

= exp

(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0

dz zPR
ba

(
z, k2
⊥, µ

′2
))

P - angular averaged P
momentum sum rule & unitarity allowed us to construct the missing virtual term
i.e. we demonstrated analytically that with TMD Sudakov form factor momentum sum
rule is satisfied and with collinear Sudakov it’s broken
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TMDs and PDFs

bla [2205.15873]

for the study, the same starting
distribution was used for all
scenarios:
collinear P,
TMD real emissions, collinear
Sudakov,
TMD P both in real emissions and
Sudakov

the effect of the TMD splitting
functions visible both in TMD
and iTMD distributions

iTMDs: significant differences,
especially in the low x
TMDs: effects in the whole k⊥
range

Red and purple curve obey
momentum sum rule, differences
due to dynamical effects in the
splitting functions

Blue curve violates momentum sum
rule
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Momentum sum rule check

bla [2205.15873]

In the table:
∑

a

∫ 1

x0
dx
∫

dk2
⊥Ã(x, k2⊥, µ2), with x0 = 10−5

The three columns: three different boundary conditions on αs and zM.

Scenarios with the same splitting
functions in real emissions and
non-resolvable part fulfil momentum
sum rule

Scenarios with TMD splitting functions
in real emissions and collinear
Sudakov form factor violate momentum
sum rule
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Conclusions & Prospects

a parton branching algorithm to TMDs and PDFs which for the first time includes TMD
splitting functions and fulfils momentum sum rule

the TMD splitting functions, defined from the high-energy limit of partonic
decay processes, with well defined collinear and high energy limits

TMD splitting functions ←→ resummation ln 1
z

new TMD Sudakov form factor thanks to momentum sum rule and unitarity

Studies presented today for forward evolution but it’s the first step towards a full
TMD MC generator covering the small-x phase space.
next steps:

fits

implement in PS:
Cascade - perfect candidate

Other directions: further develop evolution equation

extend formalism to CCFM-inspired scenarios (phase space, non-sudakov form
factor)

Thank you!
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