

U.S. DEPARTMENT OF

GK Krintiras (cern.ch/gkrintir) on behalf of the CMS Collaboration Diffraction and Low-x, 24–30 Sep 2022

1 Plenary+11 parallel talks

First(?) dedicated parallel session for UPC in QM series

Discussing synergies between LHC and Electron Ion Collider

How we ended up here?

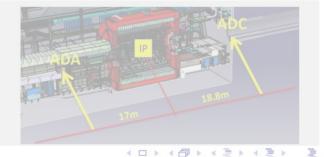
Prospects for Run 2

• Vector mesons in Run 1 Pb-Pb@2.76 TeV:

Meson	Yield	Lint	Error sources
ρ_0	$\sim 10^4$	0.26 µb ⁻¹	stat error << sys err
J/ψ (mid-rapidity)	~ 500	$23 \ \mu b^{-1}$	stat error < sys err
J/ψ (forward)	~ 100	55 μb^{-1}	
$\psi(2S)$	~ 50	$23 \ \mu b^{-1}$	stat error >> sys err

Workshop in 2014

Run 2 assumptions:


Expectations \rightarrow

	System	\sqrt{s}	Lint	Increase factor in Lint
•	Pb-Pb	5.1 TeV	1 nb ⁻¹	~7
	p-Pb	5.1 or 8 TeV	50 nb ⁻¹	~2

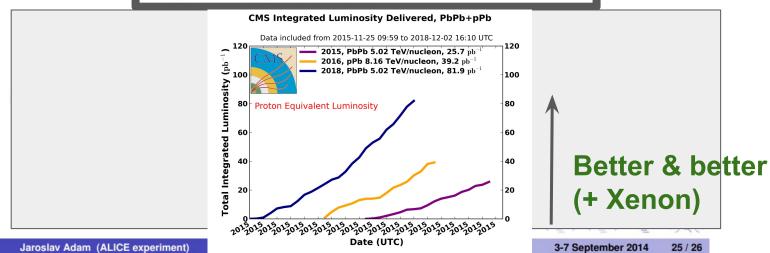
- Precision measurements of J/ψ , study of Υ
- $\gamma\gamma \rightarrow \gamma\gamma$: UPC probe to physics beyond SM

← Wishlist (nonexhaustive)

- New forward scintillators
 - Two layers each, in coincidence
 - ADA: 5.5 < η < 7.5</p>
 - ADC: -7.5 < η < -5.5
 - Stronger veto to non-UPC events thanks to better coverage compared to existing VZEROs

DQC

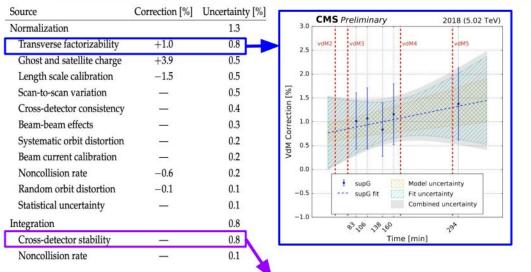
Prospects for Run 2

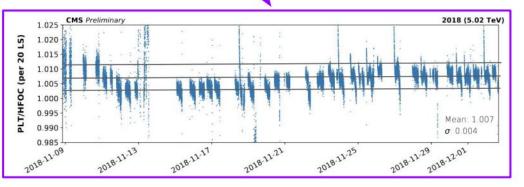

Vector mesons in Run 1 Pb-Pb@2.76 TeV:

Meson	Yield	Lint	Error sources
ρο	$\sim 10^4$	0.26 µb ⁻¹	stat error << sys err
J/ψ (mid-rapidity)	~ 500	23 μb^{-1}	stat error < sys err
J/ψ (forward)	~ 100	55 μb^{-1}	
$\psi(2S)$	\sim 50	$23 \ \mu b^{-1}$	stat error >> sys err

• Run 2 assumptions:

System	\sqrt{s}	Lint	Increase factor in Lint
Pb-Pb	5.1 TeV	1 nb ⁻¹	~7
p-Pb	5.1 or 8 TeV	50 nb ⁻¹	~2


> × 2 at the end

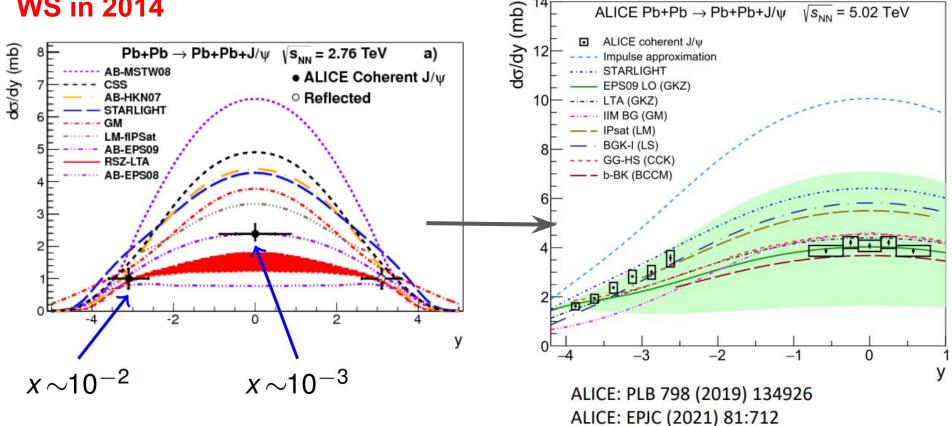


Luminosity calibration: PbPb @ 5.02 TeV (2018 Nov)

Among most precise PbPb luminosity determinations

Three systems with independent calibration:

- Fast Beam Conditions Monitor (BCM1F)
- Forward Hadron Calorimeter (HFOC)
- Pixel Luminosity Telescope (PLT)

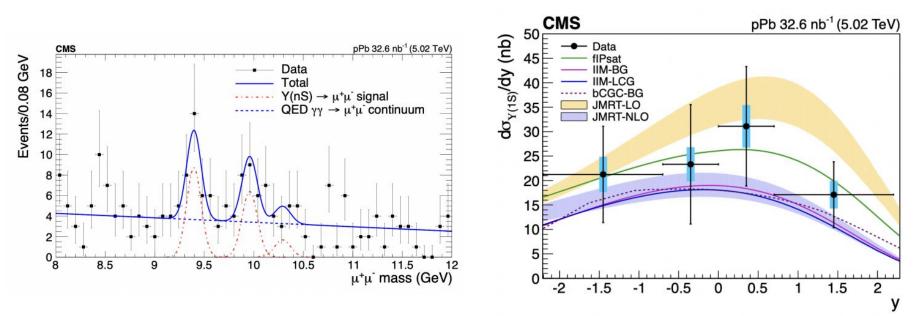

Stability monitored using emittance scans (short vdM-like scans)

Total uncertainty: 1.5% PAS-LUM-18-001

150th LHCC Meeting

State-of-the-art comparisons WS in 2014

Today



+ LHCb (2206.08221, not shown here)

Upsilon photo-production in UPC p+Pb

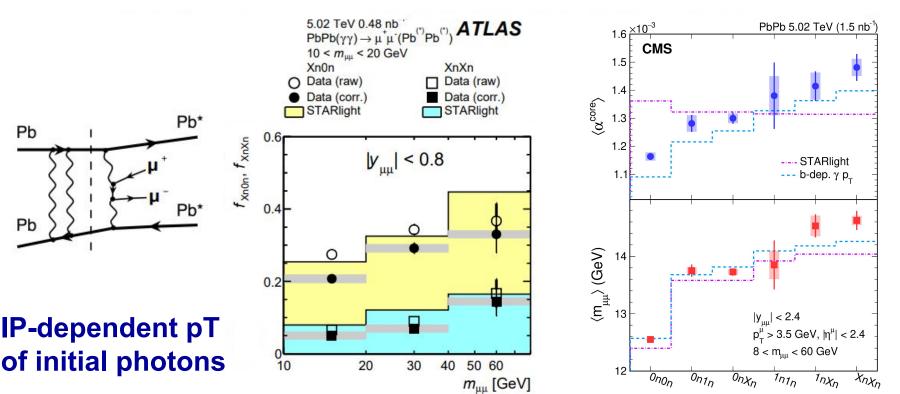
CMS, EPJC 79 (2019) 277

Exclusive Upsilon(nS) measured by CMS in γp collisions

Upsilon photo-production PC p+Pb Upsilon suppression in heavy-ion collisions STRONG INTERACTIONS | NEWS CMS, EPJC 79 (2019) 277 CERNCOURIER Exclusive L • ns 30 June 2022 The bound states of a heavy quark and its A report from the CMS experiment. antiquark, called quarkonia, have long PbPb 1.6 nb⁻¹, pp 300 pb⁻¹(5.02 TeV) been regarded as ideal probes to study the pPb 32.6 nb⁻¹ (5.02 TeV) quark-gluon plasma (QGP) formed in highprelimina < 30 GeV/ cent. energy heavy-ion collisions. The golden CMS 0-90% 11/ <2.4 Events/0.08 GeV - Υ (1S) (2015 PbPb/pp) signature is the suppression of their 18 production yield in lead-lead (PbPb) 16 0.8 collisions with respect to extrapolations RAA 14 from proton-proton (pp) collisions, caused 0.4 12 by modifications of the binding potential in 10 400 the QGP. The suppression of the different 8 100 quarkonium states is expected to depend Fig. 1. The nuclear modification factor $R_{AA}\, of$ the 6 three Υ states, as a function of $<\!\!N_{part}\!\!>$ (besides the centrality-integrated values). The error bars 4 (boxes) represent the statistical (systematic) 2 0[⊥] 8 8.5 9 9.5 intraintion 10.5 11.5 12 u⁺u⁻ mass (GeV) 0 2

9

Taking advantage of experience in hadronic collisions


γγ→µµ production in Pb+Pb UPC

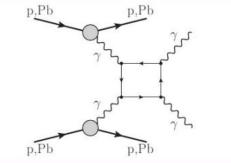
ATLAS, Phys. Rev. C 104 (2021) 024906

CMS, PRL 127, 122001 (2021)

10

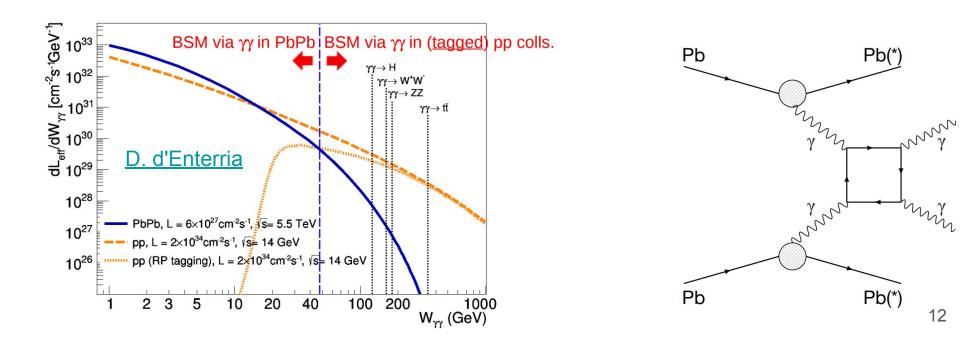
Measuring properties of events with single and mutual EM dissociation \rightarrow indirect probe of PbPb **impact parameter** in yy interactions

Exclusive $\gamma\gamma$ production

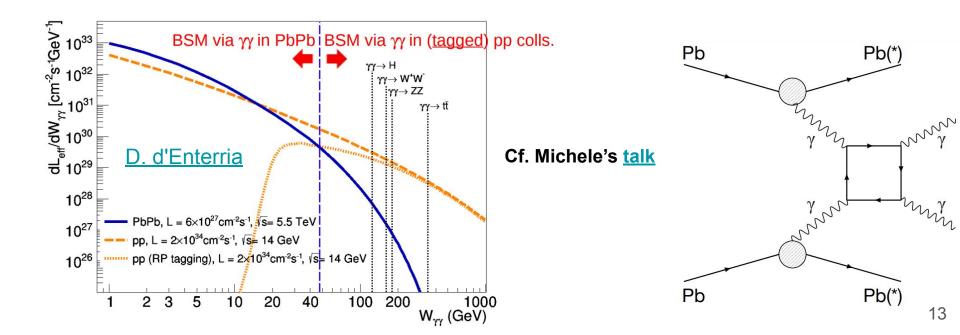

Light-by-light scattering, $\gamma\gamma \rightarrow \gamma\gamma$, has so far not been directly observed.

The reaction is of fundamental interest as deviations from SM prediction may be caused by anomalous gauge couplings, SUSY particle contributions in the loop etc.

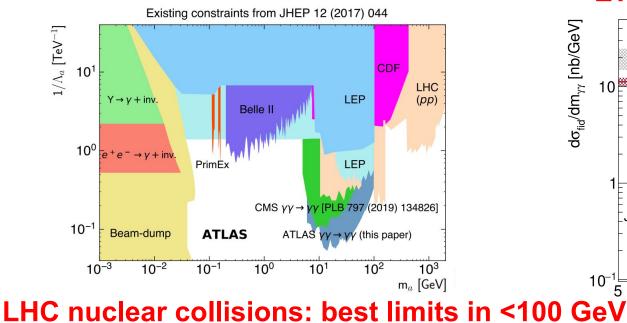
According to the recent paper (d'Enterria, Silveira PRL 111 (2013) 080405), \approx 200 signal events with m_{inv} > 5 GeV can be expected in the Atlas/CMS acceptance in a 10 nb⁻¹ Pb-Pb run.


==> Pb-Pb collisions at the LHC might thus provide the first opportunity to study this process!

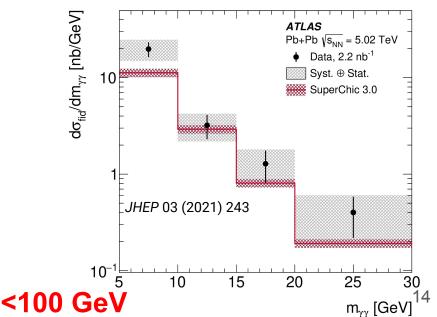
Joakim Nystrand (workshop in 2014)


Two words on LbyL scattering (with UPC)

- BSM **at high masses**: Increase \sqrt{s}
- BSM at **low couplings**: Increase *L*
 - plus taking advantage of reduced pileup, kin. thresholds, and clean final states
- Thanks to the Z^4 factor, $\gamma\gamma$ luminosities (in PbPb) >> pp ones at low $W_{\gamma\gamma}$

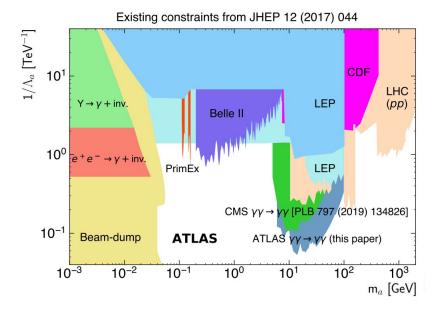

Two words on LbyL scattering (with UPC)

- BSM **at high masses**: Increase \sqrt{s}
- BSM at **low couplings**: Increase *L*
 - plus taking advantage of reduced pileup, kin. thresholds, and clean final states
- Thanks to the Z^4 factor, $\gamma\gamma$ luminosities (in PbPb) >> pp ones at low $W_{\gamma\gamma}$

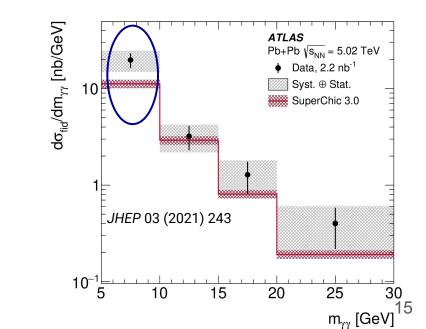


Available LbyL UPC measurements (so far)

- ATLAS
 - 2015 data, 0.48/nb, Nature Phys. 13 (2017) 9, 852-858
 - 2018 data, 1.73/nb, Phys.Rev.Lett. 123 (2019) 052001
 - 2015+18 data, 2.2/nb, JHEP 03 (2021) 243
- CMS
 - 2015 data, 0.39/nb, Phys.Lett.B 797 (2019) 134826

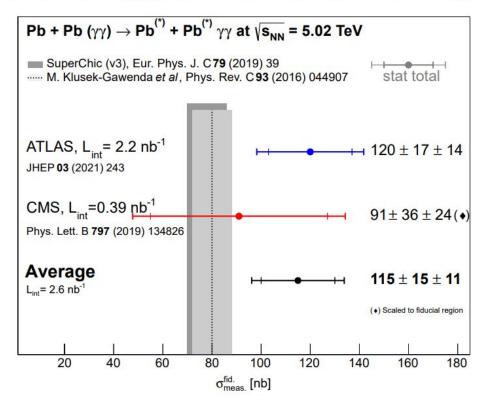


Even differential studies!



Goals of this analysis

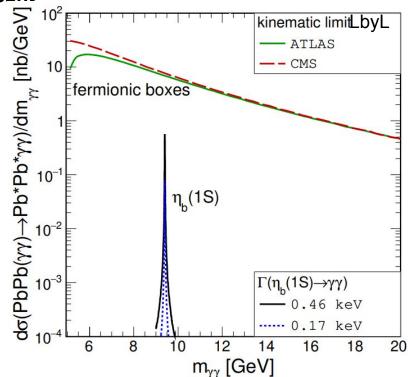
- ATLAS
 - 2015 data, 0.48/nb, Nature Phys. 13 (2017) 9, 852-858
 - 2018 data, 1.73/nb, Phys.Rev.Lett. 123 (2019) 052001
 - 2015+18 data, 2.2/nb, JHEP 03 (2021) 243
- CMS
 - 2015 data, 0.39/nb, Phys.Lett.B 797 (2019) 134826


How an averaged value compared to theory?
 Could some SM bkg explain the excess?

Measurement of light-by-light scattering

Krintiras et al., arXiv:2204.02845

Combining ATLAS+CMS measurements in a "common" fiducial phase-space


Trying to explain the excess

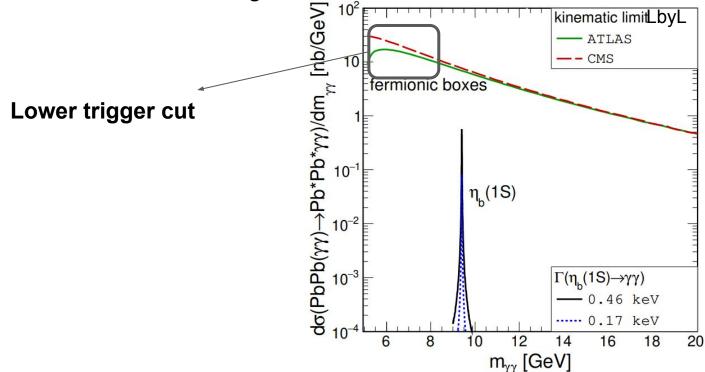
• We calculated the inclusive σ for the **photoproduction of** $\eta_{b}(1S)$

 \circ $\sigma = (0.19 - 1.41) 10^{-2}$ nb

• range reflects max. and min. of two-photon decay rates, i.e., 0.46 and 0.17 keV

• this contribution isn't significant

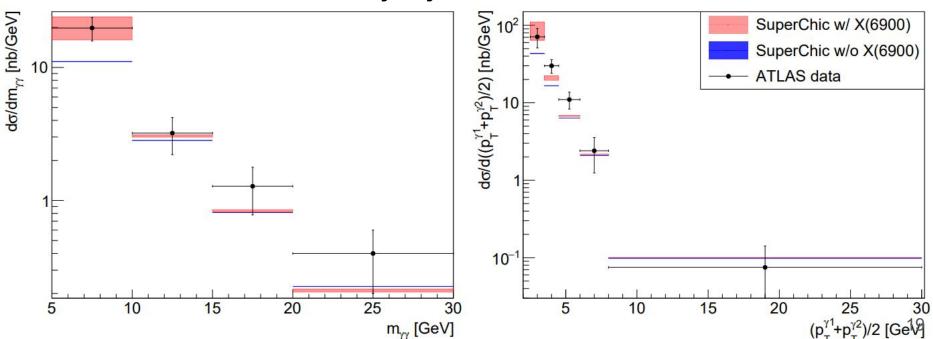
Krintiras et al., arXiv:2204.02845


Trying to explain the excess

• We calculated the inclusive σ for the **photoproduction of** $\eta_{b}(1S)$

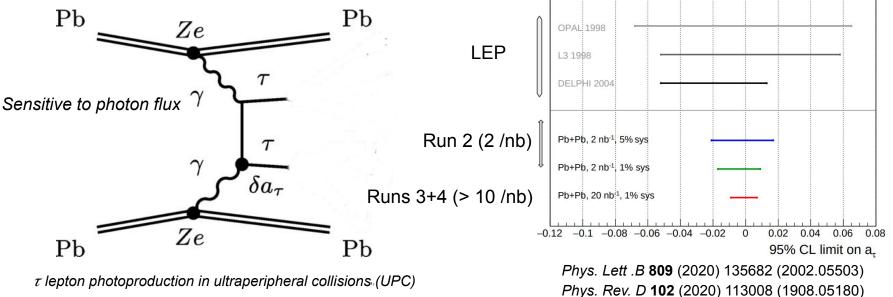
 \circ $\sigma = (0.19 - 1.41) 10^{-2}$ nb

• range reflects max. and min. of two-photon decay rates, i.e., 0.46 and 0.17 keV


this contribution isn't significant

Krintiras et al., arXiv:2204.02845

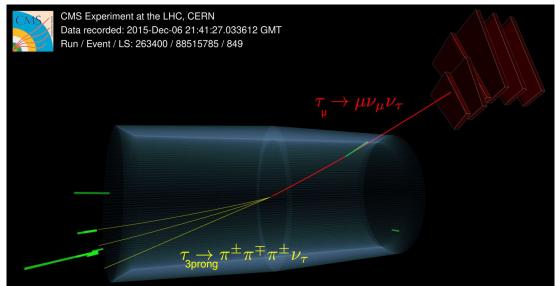
Trying to explain the excess


- The recently observed tetraquark state X(6900), in principle, could account for the excess
- Further measurements of the LbL scattering in the 5 to 10 GeV mass range crucial

Biloshytskyi et al 2207.13623.

Overview of the $\gamma\gamma \rightarrow \tau\tau$ process

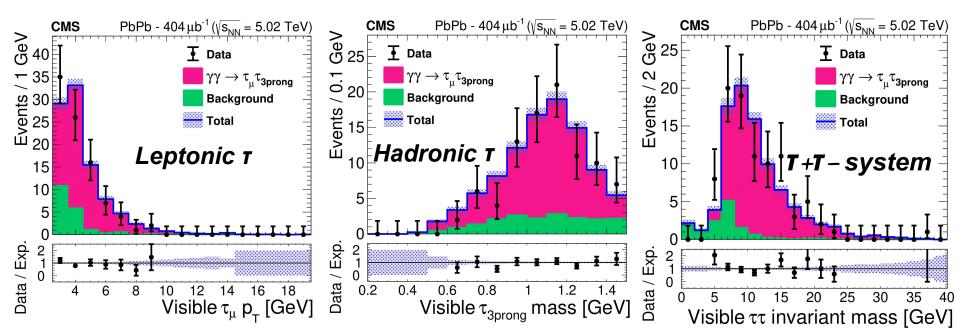
- **Promising candidate** for the $a_{\tau} = (g_{\tau} 2)/2$ determination
 - "using a large heavy ion collider" for g₁-2 suggested since <u>90s</u>
 - cross section in UPC receives a **Z⁴ enhancement** relative to pp
- LHC could **improve** the sensitivity on a_{τ} relative to LEP
 - probe the anomalous T lepton electric moment too like BELLE



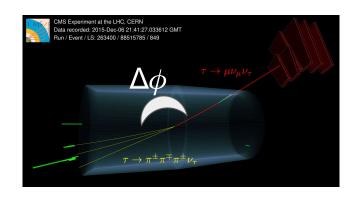
τ 's are multifaceted

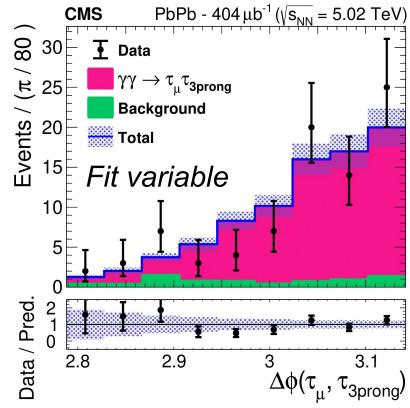
- *rr* signal regions can be then defined based on the lepton and/or hadron multiplicity
 - dilepton: the lowest reco efficiency
 - 1ℓ +1 track: main bkg due to $\mu\mu$, ee
 - 1ℓ + 3 tracks: clean with high enough yield

All channels needed for ultimate precision


CMS-PHO-EVENTS-2022-003-2

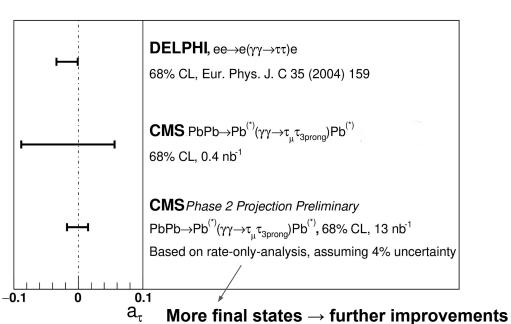
Data-to-exp comparison: control plots in the signal region

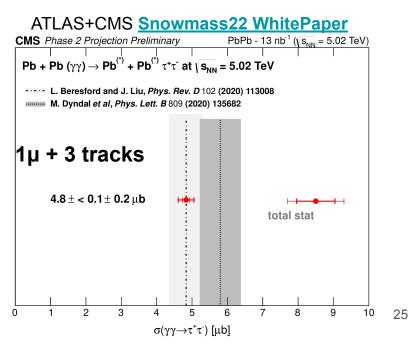

- Very good **agreement** between data & expectations
 - signal MC is scaled to the integrated luminosity
 - we're in an almost **bkg-free** phase space region(!)
 - unambiguous reconstruction of the T+T system


2206.05192 (submitted to PRL)

Signal yield estimation

- Binned likelihood fit to a discriminating variable
- Angular separation ($\Delta \phi$) between leptonic and hadronic candidates
 - MC signal (peaky) and bkg template (flat) from data
- Number of observed post-fit **signal events**: 77 ± 12
- Observed significance is more than 5σ
 - taking into account systematic uncertainties
 - affecting the rate with log-normal priors
 - affecting the shape with Gaussian prior

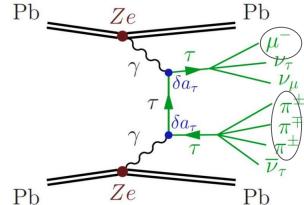



Cross section measurement

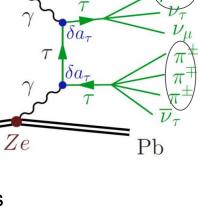
- Extra ingredients needed
- $L = 404 / \mu b$ PbPb - 404 μb^{-1} ($\sqrt{s_{NN}} = 5.02 \text{ TeV}$) CMS Bτ_µ= 17.39% $PbPb(\gamma\gamma) \rightarrow Pb^{(*)}Pb^{(*)}\tau^{+}\tau^{-}$ $B\tau_{s \text{ prong}}=14.55\%$ **efficiency** (ϵ) from MC = 78.5% **Data**, 4.8 ± 0.6 (stat) ± 0.5 (sys)µb $\sigma(\gamma\gamma \rightarrow \tau^+\tau^-) = N_{\rm sig} / (2\epsilon \,\mathcal{L}_{\rm int} \,\mathcal{B}_{\tau_{\mu}} \,\mathcal{B}_{\tau_{\rm 3prong}})$ L. Beresford and J. Liu, Phys.Rev.D 102 (2020) 113008 M. Dyndal et al., Phys.Lett.B 809 (2020) 135682 $^{6}\sigma(\gamma\gamma \rightarrow \tau^{+}\tau^{-})^{8}[\mu b]$ 4 5 10 $f_{iducial} = 4.8 \pm 0.6(stat) \pm 0.5(sys) \, \mu b$ 24

Constraints on a_{τ} and **expected performance** at HL-LHC

- Using the <u>theo calculation</u> of $\sigma(\gamma\gamma \rightarrow \tau\tau)$ as a function of a_{τ} –scale only
 - model-dependent measurements at LHC can be obtained
- We expect a total uncertainty well below the current theory uncertainty
 - we can discriminate between existing models
 - projected limit at HL-LHC competing with LEP


Outlook

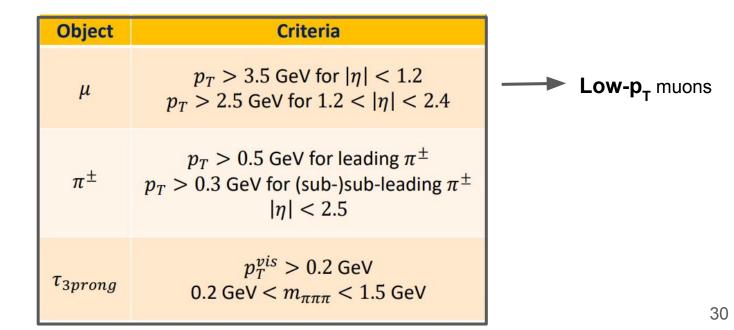
- LHC heavy ion collision (HIC) data are a **gamechanger**
 - accelerator performance well **surpassed** any initial expectations
 - exploiting HIC is a <u>unique and complementary means</u> to search for BSM phenomena
 - but also to **improve** existing modeling
- A **dedicated physics program** for studying photon-photon physics with HIC in CMS
 - I focused on QED but extra results, e.g., on <u>correlations</u> and <u>exclusive dijet production</u>
 - **further improvements** with inclusion of more data, final states, & improved techniques
 - HL-LHC baseline projection done for the expected limits on a_{τ}
- Ample room for **cross-experiment collaboration**
 - existing measurements can be used for further **combinations** of HIC data at LHC


How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

- The total $\gamma\gamma \rightarrow \tau\tau$ cross section is of O(1 mb) \rightarrow O(1 M) with 2 /nb
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco challenging at low-p_T (<20 GeV)
 - till recently **no** measurement in nuclear collisions
 - indirect presence via Z/γ* in top quark events

How to observe the $\gamma\gamma \rightarrow \tau\tau$ process at LHC

- The total $\gamma\gamma \rightarrow \tau\tau$ cross section is of O(1 mb) \rightarrow O(1 M) with 2/nb Pb
 - we expected <100 1µ+3 tracks events within acceptance
- τ lepton reco challenging at low-p_T (<20 GeV)
 - till recently **no** measurement in nuclear collisions
 - indirect presence via Z/γ* in top quark events
- Take advantage of **UPC** events and τ lepton **unique** decay signatures
 - low track multiplicity (N_{ch}), UPC triggers, and "exclusivity" requirements
 - single lepton triggers
 - **no activity** in forward hadron (HF) calorimeters above noise threshold
- Aim to establish $\gamma\gamma \rightarrow \tau\tau$ at LHC as the first crucial step during a dedicated physics program
 - using PbPb collisions in 2015 (~0.5 /nb)
 - followed by the inclusion of 2018 (~1.5 /nb)
 - Runs 3+4 projection in the realm of the joint ATLAS+CMS <u>Snowmass22</u> effort

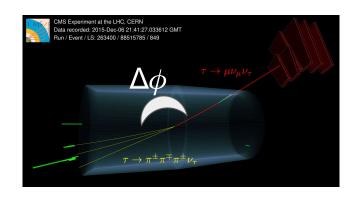


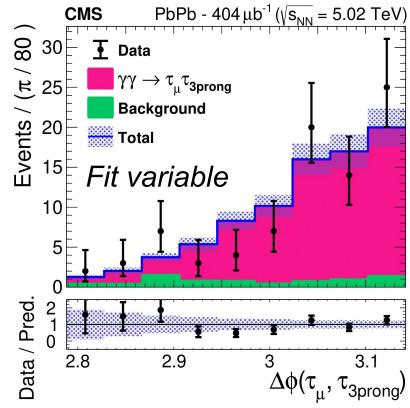
Ze

Pb

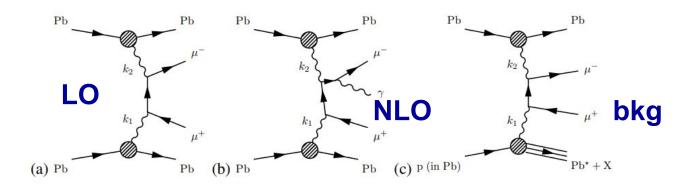
Our event selection and MC simulation

- **Trigger:** 1 muon & + >=1 track in the pixel detector + no HF activity on either side
- **Optimized offline** event selection (cf Table)
- Our signal region is 1 muon & N_{ch}=3
 - other N_{ch} and HF activity regions used in **bkg estimation**
- MC simulation for signal and validation (main bkg, efficiency)


Overview of **uncertainties**


- Statistically dominated (13%)
- Systematic wise (9.7%) the **dominant sources** are related to
 - muons (trigger efficiency)
 - pion efficiency
 - Iuminosity
- Total uncertainty comparable to the current theory uncertainty
 - difficult to discriminate between existing models
 - model-dependent limits on anomalous moments can be set

Source	Uncertainty (%)
Muon efficiency	6.7
Integrated luminosity measurement	5
Pion efficiency	3.6
Simulation sample size (bin-by-bin)	3.0
Simulation sample size (efficiency)	1.1
HF scale effect on background shape	0.9
τ lepton branching fraction	0.6
Effect of n_{ch} on background shape	0.2
_{Total} (systematic)	9.7


Signal yield estimation

- Binned likelihood fit to a discriminating variable
- Angular separation ($\Delta \phi$) between leptonic and hadronic candidates
 - MC signal (peaky) and bkg template (flat) from data
- Number of observed post-fit **signal events**: 77 ± 12
- Observed significance is more than 5σ
 - taking into account systematic uncertainties
 - affecting the rate with log-normal priors
 - affecting the shape with Gaussian prior

Exclusive dilepton processes & dissociation

 $PbPb(\gamma\gamma) \rightarrow \mu^+\mu^-(Pb^{(\star)}Pb^{(\star)})$ is the primary signal Breit-Wheeler process cross section implemented in STARlight, SuperChic, etc.

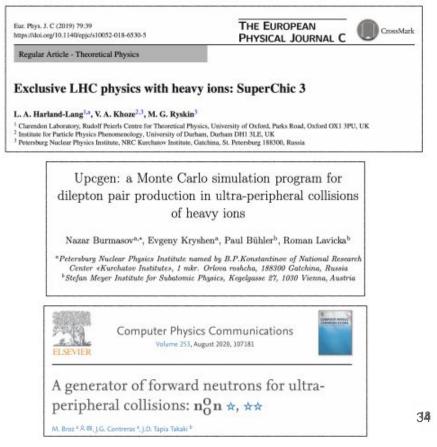
 $PbPb(\gamma\gamma) \rightarrow \mu^+\mu^-\gamma(Pb^{(\star)}Pb^{(\star)})$ is a higher order final state, also signal. Not in any existing MC, but now being addressed in calculations, and can be added to final states (e.g. from STARlight) using Pythia8 as afterburner

 $Pb + N/Pb(\gamma\gamma) \rightarrow \mu^+\mu^- X(Pb^*Pb^{(*)})$ is dissociative background (non-EPA) process, including nuclear breakup as well, modeled using LPair ($\mu\mu$) or SuperChic (ee)

Progress in MC generators

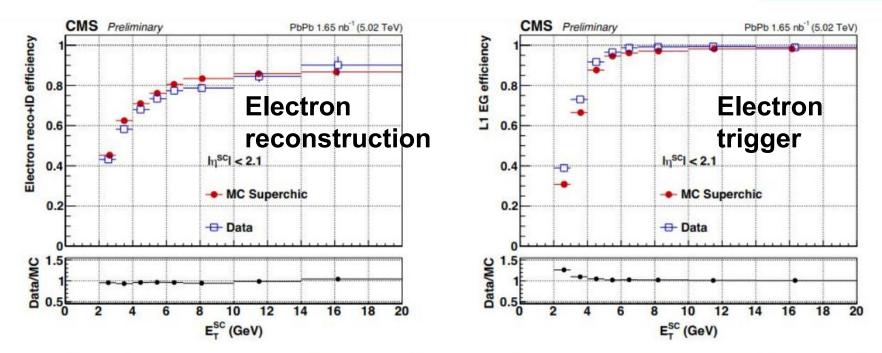
Harland-Lang et al., EPJC 79 (2019) 1, 39 EPJC 80 (2020) 10, 925

Burmasov et al., arXiv:2111.11383 [hep-ph]


Broz et al., Comput.Phys.Commun. 253 (2020) 107181

SuperChic 3+ <u>V4</u>

- Simulates variety of QCD-induced and photon-induced exclusive reactions
- Also handles loop-induced processes (LbyL) and variety of BSM models (ALPs, monopoles, etc.)
- · refined treatment of the photon flux and nuclear overlap
- · Polarization effects taken into account


UPCgen

- Focus on yy->II production
- · refined treatment of photon fluxes
- photon polarization effects included
- Can set arbitrary values of the lepton anomalous magnetic moment (useful in the studies of tau g-2)
- Noon
 - Generates extra neutrons from EM dissociation in UPC
 - Can be interfaced to other MC generators
- gamma-UPC MG5 2207.03012

Electron and L1 EM cluster efficiency for 2018 PbPb

CMS DP -2022/006

Comparison of electron reconstruction+identification (left) and Level-1 electromagnetic cluster (right) efficiencies for data (blue) and Superchic [3] simulation (red) as a function of supercluster E_T for $\ln l < 2.1$ derived in 2018 PbPb ultraperipheral collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. The efficiencies are estimated using the tag and probe technique.

Theory predictions

- LbyL cross sections calculated based on SuperChic v3 [16] and M. Klusek-Gawenda et al [17]
 - for three phase space regions, reflecting experiments' fiducial regions
 - based on single-/pair- photon kinematics
 - good agreement between the two predictions found
 - lower value in comparison to the one in *Phys.Lett.B* 797 (2019) 134826
 - the assigned theory unc (10%) **comparable** to the difference

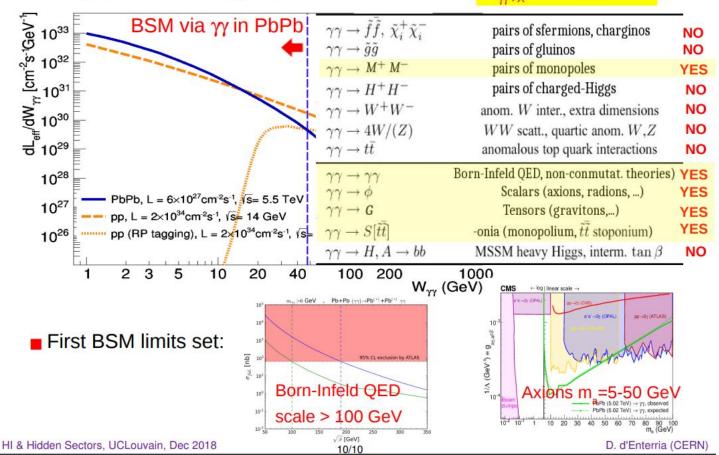
arXiv:2204.02845

$\sqrt{s_{_{ m NN}}}$	Process	Accuracy	$\sigma_{\text{theo.}}^{\text{fid.}}$ [nb]	Phase space region
		LO	101 ± 10 [16]	$E_{\rm T} > 2.0 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 5 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$
		LO	103 ± 10 [17]	$E_{\rm T} > 2.0 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 5 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$
5.02 TeV $Pb + Pb(\gamma\gamma) \rightarrow Pb^{(*)} + Pb^{(*)} \gamma\gamma$	LO	$77 \pm 8^{\dagger}$ [16]	$E_{\rm T} > 2.5 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 5 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$	
		LO	80±8 [17]	$E_{\rm T} > 2.5 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 5 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$
		LO	50±5 [16]	$E_{\rm T} > 3.0 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 6 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$
		LO	51±5 [17]	$E_{\rm T} > 3.0 \text{ GeV}, \eta < 2.4, m_{\gamma\gamma} > 6 \text{ GeV}, p_{\rm T}^{\gamma\gamma} < 1 \text{ GeV}, A_{\phi} < 0.01$

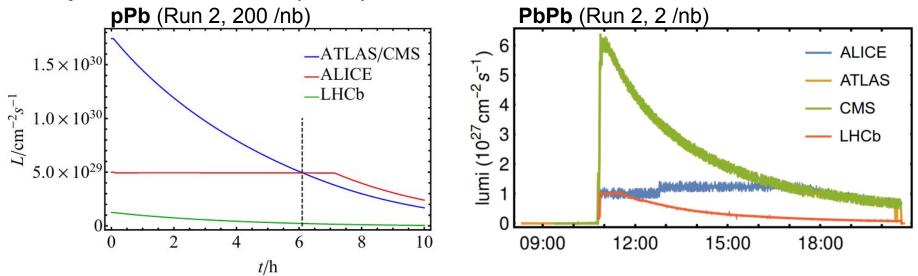
→ used as extrapolation correction

Extrapolation correction

- Fiducial-region definition differs between input measurements in single-photon E₁
 - ATLAS: > 2.5 GeV
 - CMS: > 2.0 GeV
- We need to "scale down" the CMS result by 76%
 - using the predictions from SuperChic (highlighted in the previous table)
 - we found the pair photon p_{T} <1 GeV to have **no significant effect** (same for the accoplanarity)
 - for future reference


arXiv:2204.02845

		ATLA	\S	CMS	
$\sqrt{s_{_{\rm NN}}}$	Year (Lumi. $[nb^{-1}]$)	$\sigma_{\rm raw}^{\rm fid.}$ [nb]	$\sigma_{\rm cor.}^{\rm fid.}$ [nb]	$\sigma_{\rm raw}^{\rm fid.}$ [nb]	$\sigma_{\rm cor.}^{\rm fid.}$ [nb]
	2015 (0.39-0.48)	70 ± 29 [11]	108 ± 45	120 ± 55 [12]	$91 \pm 42^{\dagger}$
5.02 TeV	2018 (1.73)	78 ± 15 [15]	120 ± 23		_
	2015+2018 (2.2)	120 ± 22 [10]	$120 \pm 22^{\dagger}$		


used in the average

Summary: BSM searches via UPC PbPb@LHC

Competitive mass range for BSM in UPCs PbPb: m_{max}=0.5–45 GeV

Heavy ion collisions (HIC) at LHC

- LHC collided more types of beam, than originally foreseen, with better than expected performance
 In practice, we've come close to the "HL-LHC" performance with pPb and PbPb collisions
- Opens up further opportunities for probes not accessible so far due to lower luminosity and/or energy
 - <u>two</u> one-month runs would be needed to reach the Runs 3+4 target of **1200** /nb in pPb
 - **five** one-month runs would be needed to reach the Runs 3+4 target of **13** /**nb in PbPb**
 - all 4 experiments participate
 - makes luminosity sharing far more challenging than high-pileup pp running
 - **complementary** phase space regions, cross checks