

Exclusive production of vector mesons at LHCb

Lucas Meyer Garcia, on behalf of the LHCb Collaboration

Central Exclusive Production (CEP)

- Elastic process: protons remain intact and an object X is produced exclusively
- •For charmonia, cross-sections can be calculated in perturbative QCD
 - Constrains gluon PDF at low x values, tests pQCD predictions and probes the pomeron
- Low-background environment
 - Allows better understanding of the centrally produced object

Published analysis

Central Exclusive Dimuon Production at $\sqrt{s} = 7$ TeV **LHCb-CONF-2011-022**

Exclusive J/ ψ and ψ (2S) production in pp collisions at $\sqrt{s}=7$ TeV J. Phys. G40 (2013) 045001

Updated measurements of exclusive J/ ψ and ψ (2S) production cross-sections in pp collisions at $\sqrt{s}=7$ TeV **J. Phys. G41 (2014) 055002**

Observation of charmonium pairs produced exclusively in pp collisions J. Phys. G41 (2014) 115002.

Measurement of the exclusive Y production cross-section at $\sqrt{s}=7$ TeV and 8 TeV JHEP 1509 (2015) 084

Study of coherent J/ ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5$ TeV with the LHCb experiment LHCB-CONF-2018-003

Central exclusive production of J/ ψ and ψ (2S) mesons in pp collisions at $\sqrt{s}=13$ TeV JHEP 10 (2018) 167

J/ψ photoproduction in Pb-Pb peripheral collisions at $\sqrt{s_{NN}}=5$ TeV PHYS. REV. C105 (2022) L032201

Study of coherent charmonium production in ultra-peripheral lead-lead collisions LHCB-PAPER-2022-012

Published analysis

Central Exclusive Dimuon Production at $\sqrt{s}=7$ TeV **LHCb-CONF-2011-022**

Exclusive J/ ψ and ψ (2S) production in pp collisions at $\sqrt{s}=7$ TeV J. Phys. G40 (2013) 045001

Updated measurements of exclusive J/ ψ and ψ (2S) production cross-sections in pp collisions at $\sqrt{s}=7$ TeV **J. Phys. G41 (2014) 055002**

Observation of charmonium pairs produced exclusively in pp collisions J. Phys. G41 (2014) 115002.

pp Only!

Measurement of the exclusive Υ production cross-section at $\sqrt{s}=7$ TeV and 8 TeV JHEP 1509 (2015) 084

Study of coherent J/ ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5$ TeV with the LHCb experiment LHCB-CONF-2018-003

Central exclusive production of J/ ψ and ψ (2S) mesons in pp collisions at $\sqrt{s}=$ 13 TeV JHEP 10 (2018) 167

J/ψ photoproduction in Pb-Pb peripheral collisions at $\sqrt{s_{NN}}=5$ TeV PHYS. REV. C105 (2022) L032201

Study of coherent charmonium production in ultra-peripheral lead-lead collisions LHCB-PAPER-2022-012

THISTA

Published analysis

Central Exclusive Dimuon Production at $\sqrt{s}=7$ TeV **LHCb-CONF-2011-022**

Exclusive J/ ψ and ψ (2S) production in pp collisions at $\sqrt{s}=7$ TeV **J. Phys. G40 (2013) 045001**

Updated measurements of exclusive J/ ψ and ψ (2S) production cross-sections in pp collisions at $\sqrt{s}=7$ TeV **J. Phys. G41 (2014) 055002**

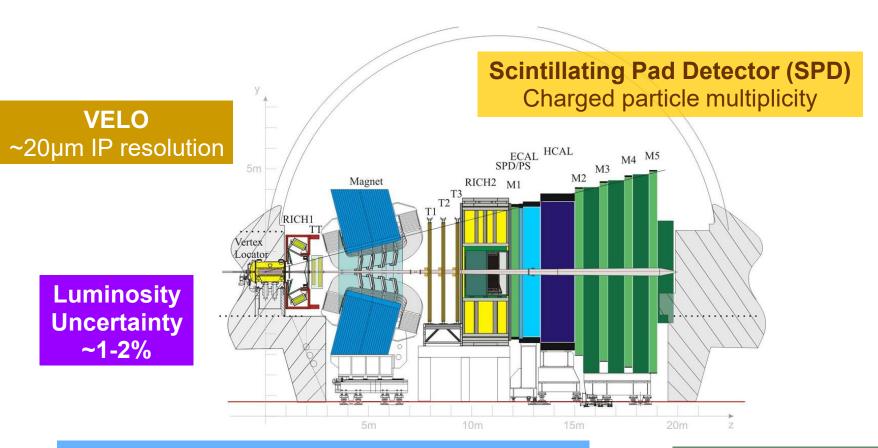
Observation of charmonium pairs produced exclusively in pp collisions **J. Phys. G41 (2014) 115002**.

Measurement of the exclusive Y production cross-section at $\sqrt{s}=7$ TeV and 8 TeV JHEP 1509 (2015) 084

Study of coherent J/ ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5$ TeV with the LHCb experiment LHCB-CONF-2018-003

Central exclusive production of J/ ψ and ψ (2S) mesons in pp collisions at $\sqrt{s}=$ 13 TeV JHEP 10 (2018) 167

J/ψ photoproduction in Pb-Pb peripheral collisions at $\sqrt{s_{NN}}=5$ TeV PHYS. REV. C105 (2022) L032201

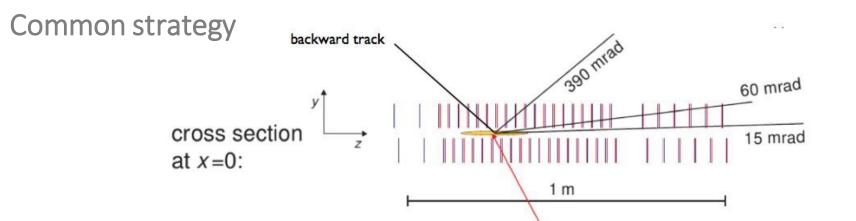

Study of coherent charmonium production in ultra-peripheral lead-lead collisions **LHCB-PAPER-2022-012**

497

Hisolin's

Detector

LHCb is a single arm spectrometer fully instrumented in the forward region (2.0< η <5.0) Designed for heavy flavour physics \leftrightarrow Exploited for general purpose physics [Int. J. Mod. Phys. A 30, 1530022 (2015)]

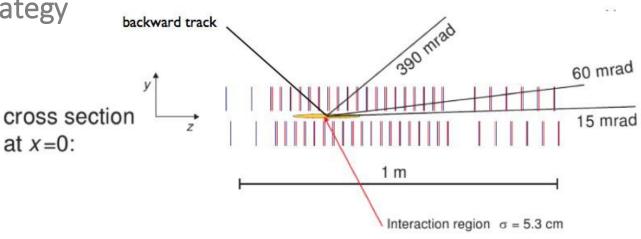


Tracking (magnet)
0.4%-0.6% momentum resolution (0.2-100 GeV)

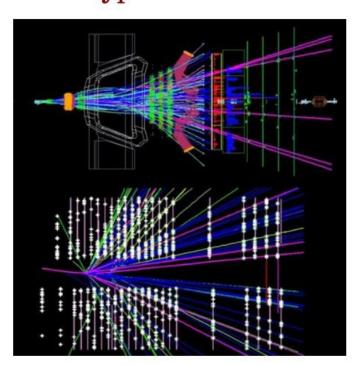
Muon ε~97% for misID~2%

Common strategy

- -LHCb cannot detect outgoing protons
 - Look for regions without particles (rapidity gaps)
- -Trigger on low multiplicity events
 - Use information from SPD and/or tracking
- -Select candidate, veto on aditional activity
 - Detector acceptance: 2.0 < η(track) < 5.0
 - Veto backward tracks: $-1.5 < \eta < -3.5$ (+Herschel at Run 2)
- -Background:
 - Non-resonant production
 - Resonant feed-down
 - Inelastic production

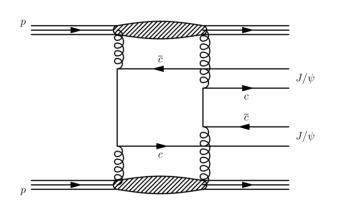

VELO

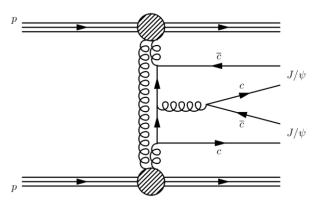
Surrounds the interaction point
No magnetic field
Reconstructs backward tracks (-3.5<η<-1.5)



Interaction region $\sigma = 5.3$ cm


Common strategy



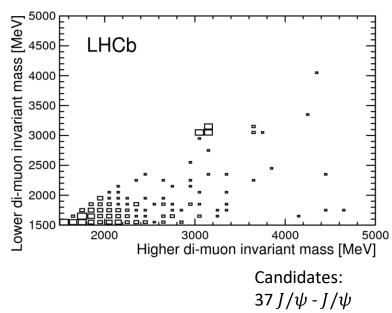

Typical Event

CEP-like event: 2muons

Combined dataset:

2011: $\sim 0.9 \ fb^{-1} \ (7 \ TeV)$

2012: \sim 2.0 fb^{-1} (8 TeV)


Trigger:

2 muons with $p_T > 400 MeV$

Less 10 hits at SPD

Candidate selection:

Exactly 4 forward tracks, with at least 3 identified as muon

 $5 I/\psi - \psi(2S)$

Exponential fit (up to 2500~MeV) extrapolated to estimate non-resonant background 0.3 ± 0.1 background events for J/ψ 0.07 ± 0.02 background events for $\psi(2S)$

Feed-down from J/ ψ ψ (2S) to J/ ψ J/ ψ estimated from simulation Normalize simulation to match J/ ψ ψ (2S) yield 2.9 \pm 2.0 background events

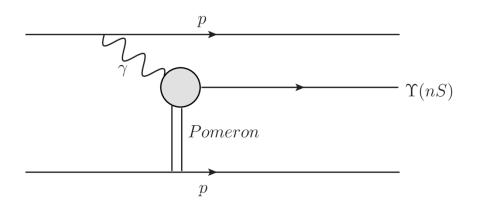
Inelastic background estimated only for J/ ψ J/ ψ Describe di-meson p_T^2 with sum of 2 exponentials (elastic and inelastic)

$$f_{\rm el}b_s \exp(-b_s p_{\rm T}^2) + (1 - f_{\rm el})b_b \exp(-b_b p_{\rm T}^2)$$

Elastic fraction: 0.42 ± 0.17

Cross-sections are quoted without proton dissociation correction

Limits are caculated with 90% CL


$$\sigma^{J/\psi J/\psi} = 58 \pm 10 ({
m stat}) \pm 6 ({
m syst}) {
m pb},$$
 $\sigma^{J/\psi \psi(2S)} = 63^{+27}_{-18} ({
m stat}) \pm 10 ({
m syst}) {
m pb},$
 $\sigma^{\psi(2S)\psi(2S)} < 237 {
m pb},$
 $\sigma^{\chi_{c0}\chi_{c0}} < 69 {
m nb},$
 $\sigma^{\chi_{c1}\chi_{c1}} < 45 {
m pb},$
 $\sigma^{\chi_{c2}\chi_{c2}} < 141 {
m pb},$

$$\frac{\sigma(J/\psi \psi(2S))}{\sigma(J/\psi J/\psi)} = 1.1^{+0.5}_{-0.4}$$

$$\frac{\sigma(\psi(2S))}{\sigma(J/\psi)} = 0.17 \pm 0.02$$

$$\sigma^{J/\psi J/\psi} / \sigma^{J/\psi} |_{\text{exclusive}} = (2.1 \pm 0.8) \times 10^{-3}$$
$$\sigma^{J/\psi J/\psi} / \sigma^{J/\psi} |_{\text{inclusive}} = (5.1 \pm 1.0 \pm 0.6^{+1.2}_{-1.0}) \times 10^{-4}$$

Combined dataset:

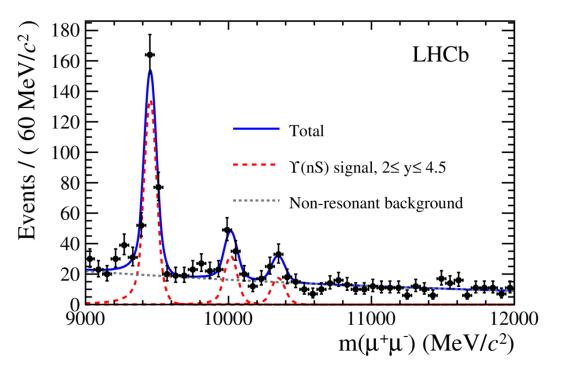
2011: $\sim 0.9 \ fb^{-1} \ (7 \ TeV)$

2012: \sim 2.0 fb^{-1} (8 TeV)

Trigger:

2 muons with p_T > 400 MeV

Less 10 hits at SPD


Candidate selection:

Exactly 2 forward tracks, both identified as muons

$$p_{T(\Upsilon)}^2 < 2 \ GeV^2$$

 $M_{\Upsilon} \in [9 \text{ GeV}, 20 \text{ GeV}]$

CEP $\Upsilon(nS)$

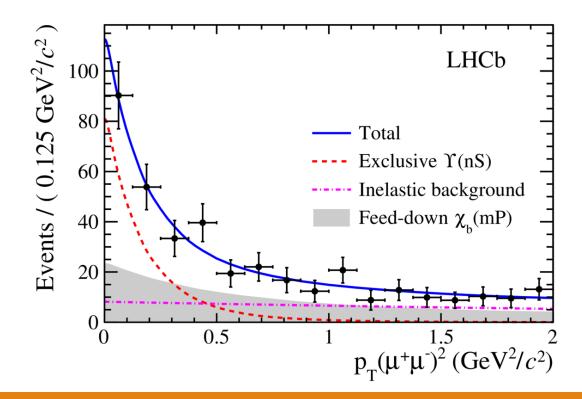
1901 selected candidates

Non-resonant background separated via mass fit.

Resonances modeled with double-sided Crystal Ball functions.

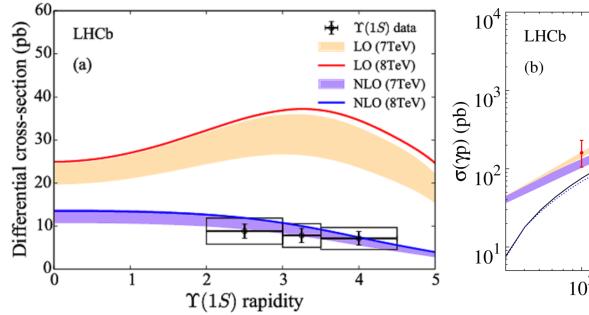
Non-resonant modeled with exponential function.

Takes input from data and simulation (Only 6 free parameters)

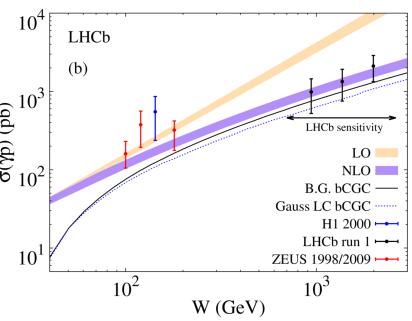

CEP $\Upsilon(nS)$

Feed-down background from χ_b decays estimated from simulation and data. Background fraction: 39%

Proton dissociation background extracted from fit to p_T^2 of dimuons.


Non-resonant contribution subtracted via sPlot technique Signal shape obtained from simulation

Background fraction: 28%

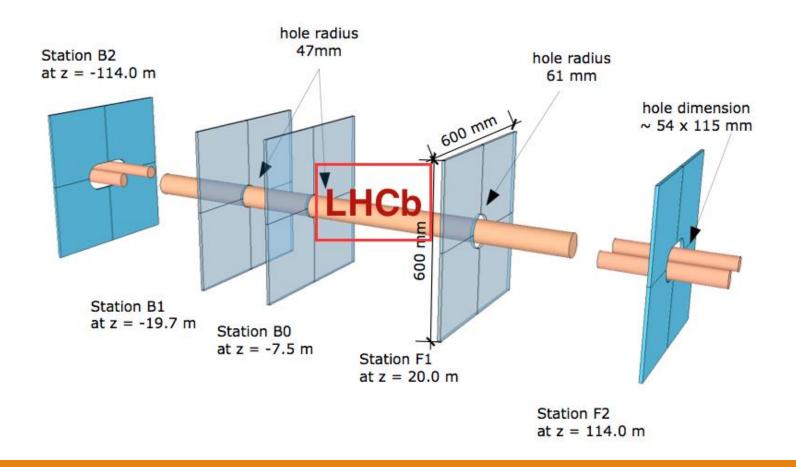


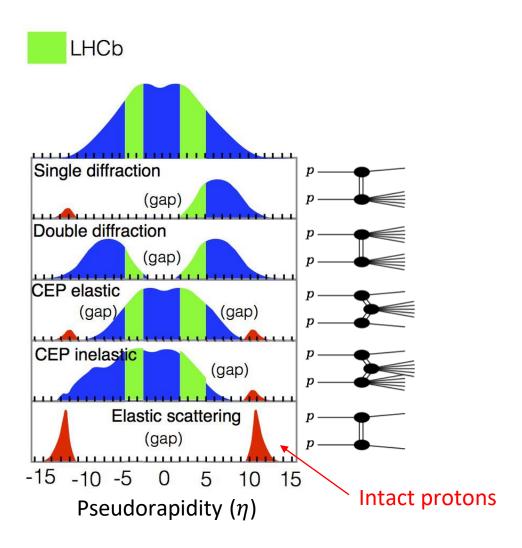
CEP Υ (nS)

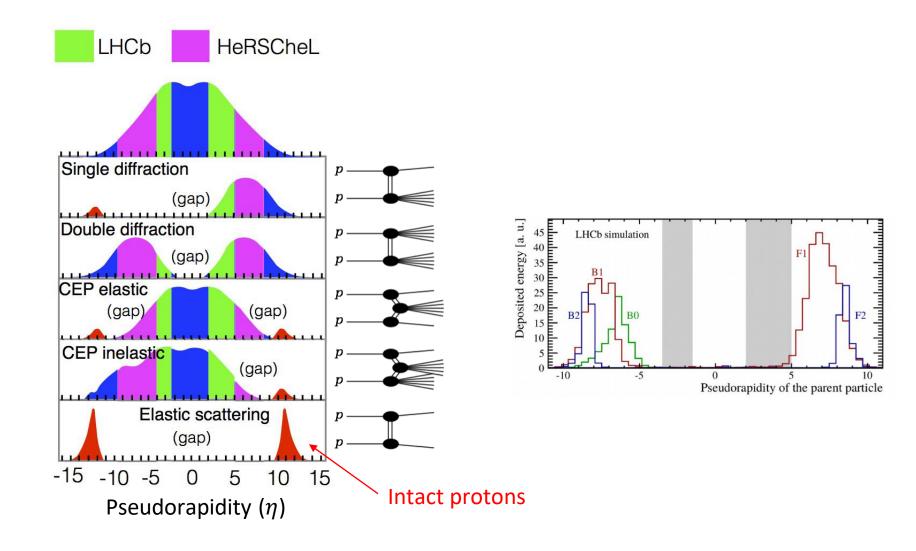
$$\sigma(pp \to p\Upsilon(1S)p) = 9.0 \pm 2.1 \pm 1.7 \text{ pb},$$

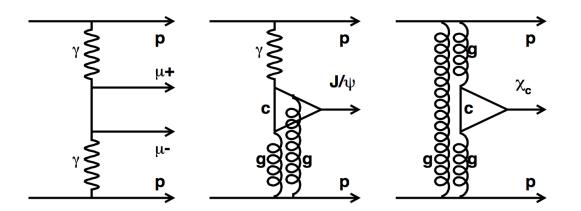
 $\sigma(pp \to p\Upsilon(2S)p) = 1.3 \pm 0.8 \pm 0.3 \text{ pb}, \text{ and}$
 $\sigma(pp \to p\Upsilon(3S)p) < 3.4 \text{ pb at}| \text{ the } 95\% \text{ confidence level}$

Rapidity dependence in agreement with NLO prediction.




Photon-proton cross-section in agreement with NLO and CGC predictions.


LO & NLO: JHEP 1311 (2013) 085 bGCG: Phys. Lett. B742 (2015) 172


High Rapidity Shower Counters for LHCb – HeRSCheL

- Installed at the end of 2014 → increase pseudorapidity coverage
- 5 stations with 4 scintillators with PMT
- Able to detect forward particle showers and veto events with these

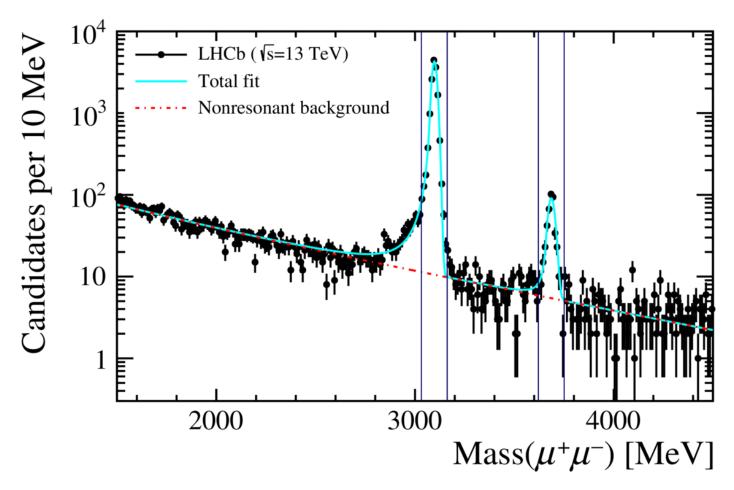
Combined dataset:

≈204 /pb (2015)

Trigger:

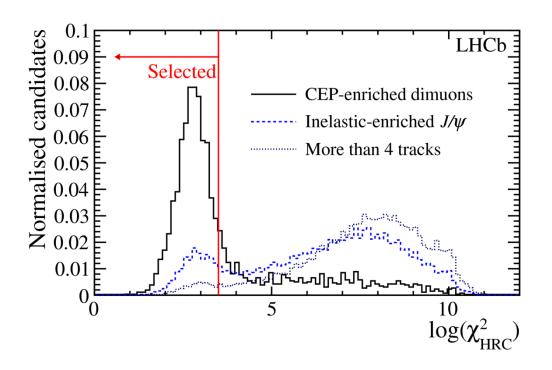
2 muons with $p_T > 400 \, MeV$

Less than 30 hits at SPD


Candidate selection:

Exactly 2 reconstructed muons (2 $< \eta < 4.5$)

$$p_{T(J/\psi)}^2 < 0.8 \; GeV^2$$


Mass window

Herschel cut: $\log(\chi^2_{HRC}) < 3.5$

14753 J/ψ candidates 440 $\psi(2S)$ candidates

The HeRSCheL response is described using a variable χ^2_{HRC} that quantifies the activity above noise, taking account of correlations between the counters.

Clear discrimination observed for:

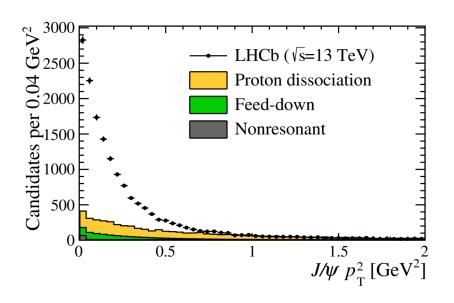
CEP-enriched dimuons: $p_{T(I/\psi)}^2 < 0.01 \ GeV^2$

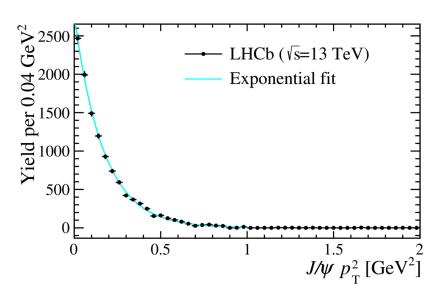
More than four tracks

Inelastic-enriched J/ψ : $p_{T(J/\psi)}^2 > 1 \ GeV^2$

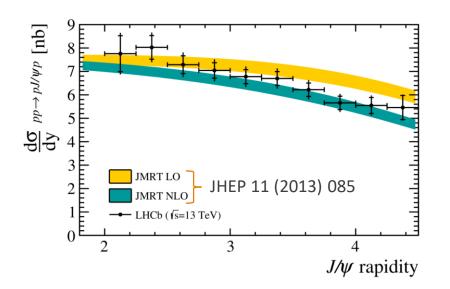
Non-resonant background estimated from fit to mass distribution.

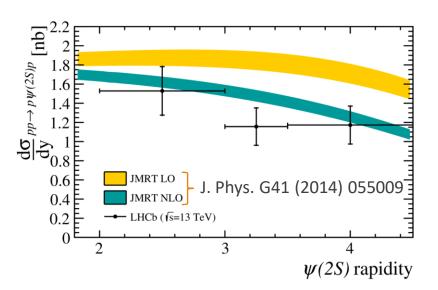
Resonances modeled with CrystalBall functions Non-resonant modeled with sum of exponential functions Background fraction: 0.9% (16.1%) for J/ψ ($\psi(2S)$)


Feed-down background estimated from simulation and data.


Considered only for J/ψ

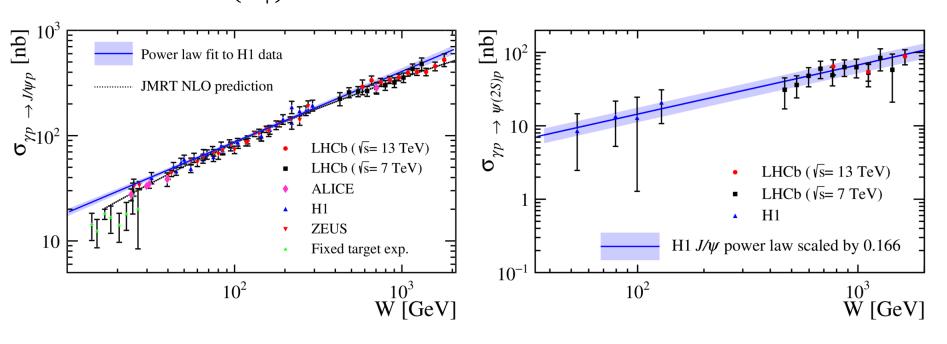
Combined background fraction: 0.6%


Proton dissociation background extracted from fit to p_T^2 of dimuons.


Based on HeRSCheL information 17.5% (11%)for J/ψ ($\psi(2S)$)

Lower feed-down and inelastic background thanks to HeRSCheL!

NLO shows better agreement than LO


$$\sigma_{J/\psi \to \mu^+ \mu^-}(2 < \eta < 4.5) = 399 \pm 16 \pm 10 \pm 16 \text{ pb},$$

 $\sigma_{\psi(2S) \to \mu^+ \mu^-}(2 < \eta < 4.5) = 10.2 \pm 1.0 \pm 0.3 \pm 0.4 \text{ pb}.$

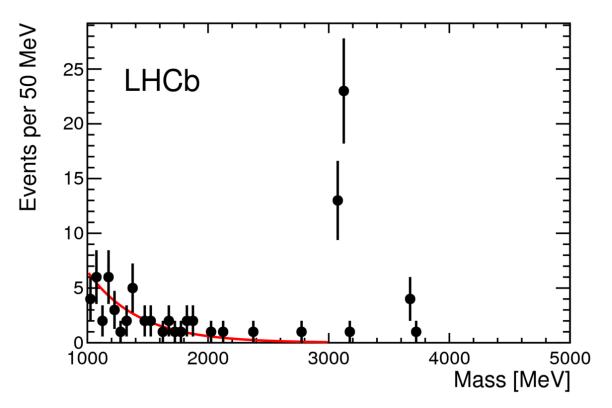
$$\sigma_{pp\to p\psi p} = r(W_+)k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma p\to \psi p}(W_+) + r(W_-)k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma p\to \psi p}(W_-)$$

r is the gap survival factor, $k_{\pm} \equiv M_{\psi}/2e^{\pm y}$ is the photon energy,

 dn/dk_{\pm} is the photon flux and $W_{\pm}^2 = 2k_{\pm}\sqrt{s}$ is the invariant mass of the photon-proton system

Assuming HERA result for W_{-} , one can obtain $\sigma(W_{+})$:

Analysis in advanced stage:

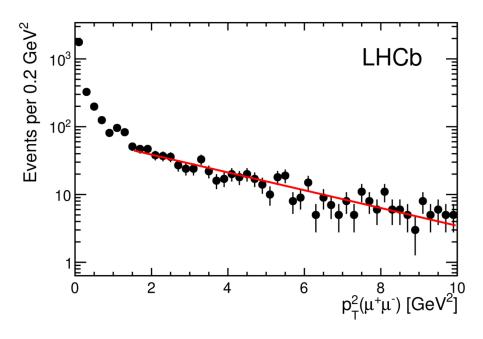

- •Update of CEP J/ψ and $\psi(2S)$ measurement with full Run 2 data
- •Update of $\Upsilon(nS)$ CEP measurement
- •Studies of exclusive ϕ ϕ and J/ψ ϕ production

Summary

- Extensive CEP program at LHCb
 - Some results from pp data were shown
 - New studies coming soon
- Important tests of QCD in the forward region
- Studies are also conducted on PbPb colisions
 - See Xiaolin's talk for latest results

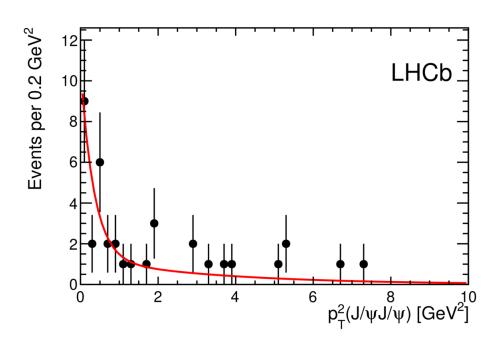
Thank you!

Backup

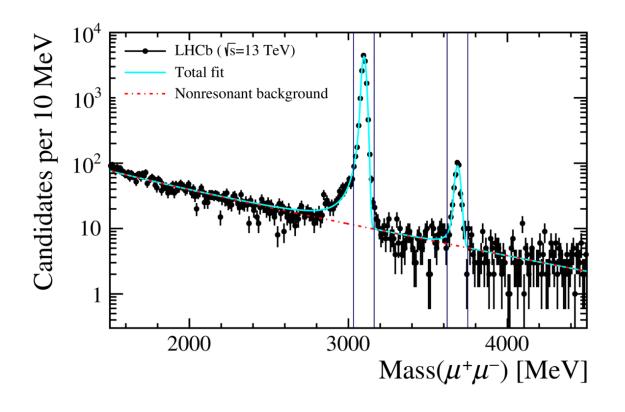

Mass of the second pair when the first pair has a mass consistent with J/ψ or $\psi(2S)$

Exponential fit (up to 2500~MeV) extrapolated to estimate non-resonant background 0.3 ± 0.1 background events for J/ψ 0.07 ± 0.02 background events for $\psi(2S)$

Feed-down from J/ ψ ψ (2S) to J/ ψ J/ ψ estimated from simulation Normalize simulation to match J/ ψ ψ (2S) yield 2.9 \pm 2.0 background events


Inelastic background estimated only for J/ ψ J/ ψ Describe di-meson p_T^2 with sum of 2 exponentials (elastic and inelastic)

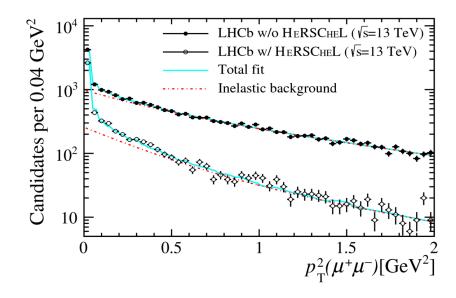
Slope of inelastic exponential obtained from fit to p_T^2 of exclusive dimuons with mass within [6, 9] GeV



Fit di-meson p_T^2 with fixed slope on background exponential to estimate elastic fraction

$$f_{\rm el}b_s \exp(-b_s p_{\rm T}^2) + (1 - f_{\rm el})b_b \exp(-b_b p_{\rm T}^2)$$

Elastic fraction: 0.42 ± 0.17

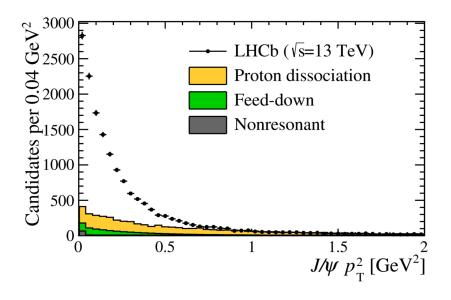


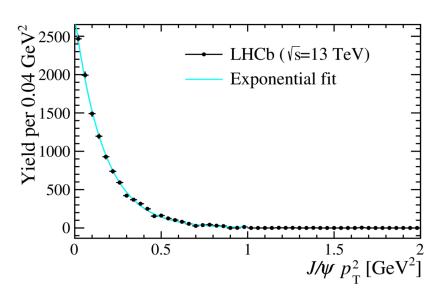
14753 J/ψ candidates 440 $\psi(2S)$ candidates

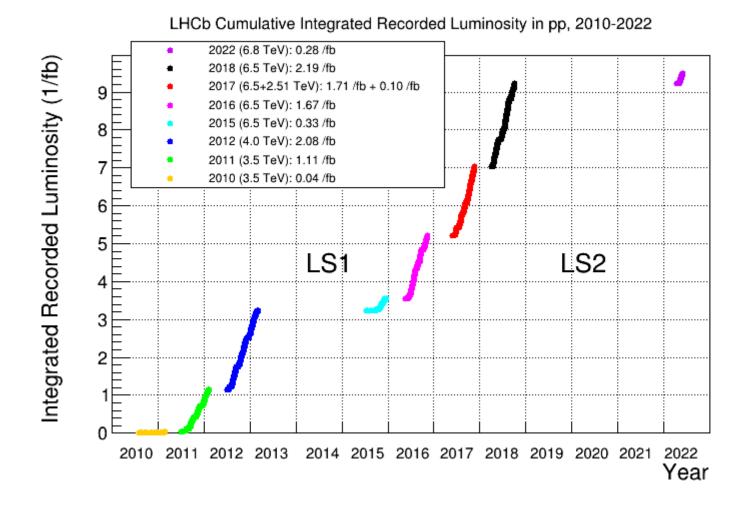
Reconstruction and selection efficiencies estimated from data driven methods

Fraction of single interaction beam crossings: (36.52 ± 0.03) %

HeRSCheL efficiency estimated from fit to p_T^2 of non-resonant dimuons. Signal shape obtained from simulation Background modeled as sum of two exponentials




New Technique:


$$\begin{split} N_{\rm HRC} &= \varepsilon N_{\rm sig} + \beta(p_{\it T}) N_{\rm bkg} \\ N_{\rm anti-HRC} &= [1 - \varepsilon] N_{\rm sig} + [1 - \beta(p_{\it T})] \ N_{\rm bkg} \end{split}$$

ε known from QED sample
Pure bkg sample obtained
Subtract bkg from total => Signal derived

$$\beta = S_{\bar{H}} - ((1 - \epsilon_{\mathrm{H}})/\epsilon_{\mathrm{H}})S_{\mathrm{H}}$$

