Multiple pion pair production in a Regge based model

Rainer Schicker
(in coll. with Laszlo Jenkovszky)

Diffraction and Low-x, Sept 29, 2022

Central diffractive production at the LHC

central prod.

central prod./single diss.

central prod./double diss.

■ Pomerons \mathbb{P} and Reggeons \mathbb{R} contribute to these topologies
■ Rapidity gaps can also be due to photon and $\mathrm{W}^{ \pm}$,Z-exchange

- Pomerons and photons contribute differently in pp, pA and AA

Experimental identification of these topologies by

1. Tag the foward protons or fragments by Roman pots (no Roman Pots in ALICE)
2. Define rapidity range on both sides of midrapidity void of activity (rapidity gap) \rightarrow used by ALICE in Run 1, 2 and 3

The ALICE Detector

midrapidity tracks in central barrel: ITS,TPC,TOF: $-0.9<\eta<0.9$
rapidity gap C-side: AD C: (-7.0, -4.9), V0C: (-3.7, -1.7), FMD: (-3.4, -1.7)
rapidity gap A -side: AD A: $(4.8,6.3)$, V0A: $(2.8,5.1)$, FMD: $(1.7,5.1)$

ALICE particle identification capability

■ Particle identification by specific energy loss $\mathrm{dE} / \mathrm{dx}$ in TPC (left), and by TOF detector (right)

ALICE rapidity gap detectors Run 3

■ new rapidity gap detectors in Run 3 with similar rapidity coverage

Multiplicity distribution in double gap events in ALICE

- master thesis Felix Reidt, University Heidelberg:
"Analysis of Double-Gap Events in
Proton-Proton Collisions at $\sqrt{s}=7 \mathrm{TeV}$ with ALICE at the LHC"
■ look at events with fixed charged particle multiplicity in central barrel
- evaluate the fraction of double gap events in this event class
- compare to Pythia6 and Phojet

(a) multiplicity distribution from data

Double gap triggered event in ALICE

Two track double gap events

- analyze invariant mass of pion pairs $\pi^{+} \pi^{-}$and kaon pairs $K^{+} K^{-}$

- clear resonance structures seen in pion and kaon sector

Dual resonance model of Pomeron-Pomeron scattering

■ many overlapping resonances at low masses $\mathrm{M}<3 \mathrm{GeV} / \mathrm{c}^{2}$, transition to continuum
■ Dual Amplitude with Mandelstam Analyticity (DAMA) (A.I. Bugrij et al., Fortschr. Phys. 21, (1973) 427.)

Connection, through unitarity (generalized optical theorem) and Veneziano-duality, between the Pomeron-Pomeron cross section and the sum of direct-channel resonances.

- DAMA requires the use of nonlinear, complex Regge trajectories

■ resonance widths are provided by imaginary part of DAMA
■ direct-channel pole decomposition relevant for central production

$$
\begin{equation*}
A\left(M_{X}^{2}, t\right)=a \sum_{i=f, P} \sum_{J} \frac{\left[f_{i}(t)\right]^{J+2}}{J-\alpha_{i}\left(M_{X}^{2}\right)} \tag{1}
\end{equation*}
$$

Nonlinear, complex meson trajectories

- real and imaginary part of trajectory are connected by dispersion relation

$$
\begin{equation*}
\Re e \alpha(s)=\alpha(0)+\frac{s}{\pi} P V \int_{0}^{\infty} d s^{\prime} \frac{\Im m \alpha\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \tag{2}
\end{equation*}
$$

■ imaginary part is related to the decay width

$$
\begin{equation*}
\Gamma\left(M_{R}\right)=\frac{\Im m \alpha\left(M_{R}^{2}\right)}{\alpha^{\prime} M_{R}} \tag{3}
\end{equation*}
$$

- imaginary part chosen as sum of single threshold terms

$$
\begin{equation*}
\Im m \alpha(s)=\sum_{n} c_{n}\left(s-s_{n}\right)^{1 / 2}\left(\frac{s-s_{n}}{s}\right)^{\left|\Re e \alpha\left(s_{n}\right)\right|} \theta\left(s-s_{n}\right) . \tag{4}
\end{equation*}
$$

- imaginary part of trajectory in Eq.(4) has correct threshold and asymptotic behaviour
- c_{n} are expansion coefficients, s_{n} are threshold energies for decay channels

A Regge model for double gap events

A Regge model for different charged particle multiplicities $\mathrm{N}_{c h}$ in Pomeron-Pomeron events

- channel for multiplicities $\mathrm{N}_{c h} \geq 2$

- cross section from convoluting subdiagram cross section with Pomeron flux of the proton
- Pomeron flux defined by $F_{\text {prot }}^{\mathbb{P}}(t, \xi)=\frac{9 \beta_{0}^{2}}{4 \pi^{2}}\left[F_{1}(t)\right]^{2} \xi^{1-2 \alpha(t)}$ (A. Donnachie, P.V. Landshoff, Nucl.Phys. B303 (1988) 634).
$F_{1}(t)$ elast. form factor, Pomeron traj. $\alpha(t)=1 .+\varepsilon+\alpha^{\prime} t$

A Regge model for double gap events

■ for multiplicities $N_{c h} \geq 4$, subdiagrams with $\mathbb{P} \mathbb{P}, \mathbb{R} \mathbb{R} \mathbb{R}$ couplings

■ by optical theorem $\sigma_{t}\left(\tilde{s}, M_{1}^{2}, M_{2}^{2}\right)=\Im m A\left(\tilde{s}, \tilde{t}=0, M_{1}^{2}, M_{2}^{2}\right)$
■ imaginary part of $A\left(\tilde{s}, \tilde{t}, M_{1}^{2}, M_{2}^{2}\right)$ defined by $\alpha_{\mathbb{R}}(\tilde{s}), \alpha_{\mathbb{P}}(\tilde{s})$

Reggeizing $q \bar{q}$ states in the light quark sector

■ "Mesons in a relativized quark model with chromodynamics"
S. Godfrey, N. Isgur, Phys.Rev. D 32 (1985) 189.

- calculate $q \bar{q}$ bound states in a relativistic potential $\mathrm{V}(\mathrm{p}, \mathrm{r})$

$$
\begin{equation*}
V(\mathrm{p}, \mathrm{r})=H^{\text {conf }}+H^{s o}+H^{\text {hyp }}+H_{A} \tag{6}
\end{equation*}
$$

$H^{\text {conf }}$: confining pot., $H^{\text {so }}$: spin-orbit inter., $H^{\text {hyp }}$: hyperfine inter., H_{A} : annihilation inter.

- isoscalar sector: annihilation interaction, considerable mixing with non- $q \bar{q}$ states
- isovector sector: no annihilation interaction, basis states $(-u \bar{d},(u \bar{u}-d \bar{d}) / \sqrt{2}), d \bar{u})$
solve (6) in isovector channel (mass and width in MeV) spectroscopic notation $n^{2 S+1} L_{J}$:
- n radial quantum number
- S spin
- L orbital angular momentum
- J total angular momentum

$n^{2 S+1} L_{J}$	mass sol.(6)	PDG	mass (PDG) $)$	width (PDG)
$1^{1} S_{0}$	150	π	140	0
$1^{1} P_{1}$	1220	b_{1}	1230	142
$1^{1} D_{2}$	1680	π_{2}	1672	258
$1^{1} F_{3}$	2030	-	-	-
$1^{1} G_{4}$	2330	-	-	-
Diffraction and Low-x, Sept 29, 2022 $\quad 13$				

Reggeizing isoscalar states

- Reggeizing the isoscalar states $f_{2}(1270), f_{4}(2050), f_{6}(2510)$

real part f_{2} traj.

imaginary part f_{2} traj.
figures from: R.Fiore, L.Jenkovszky, R.Schicker, Eur.Phys.J. C76 (2016) 38.

Reggeizing isovector states

■ DAMA fit to the isovector states π, b_{1}, π_{2} defines the (π, b)-trajectory

\square DAMA fit of (π, b)-trajectory predicts

- b_{3} state, mass 2090 MeV and width 321 MeV
- π_{4} state, mass 2437 MeV and width 352 MeV
- b_{5} state, mass 2738 MeV and width 371 MeV

The (π, b)-trajectory

■ On the (π, b)-trajectory $\mathrm{PC}=(-,+)$ for $\pi_{0}, \pi_{2}, \pi_{4}$, while $\mathrm{PC}=(+,-)$ for b_{1}, b_{3}, b_{5}

- Mass distribution for $\mathrm{PC}=(-,+)$ and $(+,-)$ states on (π, b)-trajectory

The final state mass distribution

■ Two-dimensional mass distribution of final state derived from subdiagram amplitude

The final state mass distribution

■ energy conservation requires $\tilde{s}=t_{1}+t_{2}=\left(E_{1}+E_{2}\right)^{2}$ in subdiagram, with $E_{i}^{2}=M_{i}^{2}+p_{i}^{2}$

- define phase space factor $\sqrt{1-\frac{\left(M_{1}+M_{2}\right)^{2}}{\tilde{s}}}$
- two-dimensional mass distribution with phase space factor for $\sqrt{\tilde{s}}=3 \mathrm{GeV}$

$$
\mathrm{PC}=(+,-)
$$

Multiple pair production

Summary and Outlook

■ pion and kaon pairs in double gap events collected by ALICE in Run 1 and Run 2
■ multiplicity of charged tracks analysed in ALICE double gap events

- Regge based model for double gap events with multiplicity ≥ 2 being developed
- final state mass distribution from diagram at proton level is under development

■ implementation of final state resonance decays is under development

BACKUP

