Introduction 00000 NL description

Numerical results

Conclusions 0

Mueller Tang jets in next-to-leading BFKL

D. Colferai^{1,2}, F. Deganutti³, T. Raben³, C. Royon³

STRONG-2020 GA 824093 ¹University of Florence, Italy

²INFN Florence, Italy

³Kansas University, Kansas

Diffraction and low-x

Corigliano Calabro

28.09.2022

Introduction	NL description	Numerical results	Conclusions
●0000		0000000	O
Outline			

- Introduction:
 - Review of PT picture of BFKL for Mueller-Tang jets
 - LL factorization formula
- Beyond LL approximation
 - Phenomenology with LL and NLL GGF
 - $\bullet \ \rightarrow \ {\sf need} \ {\sf of} \ {\sf a} \ {\sf full} \ {\sf NLL} \ {\sf calculation}?$
- NLL impact factors
 - Structure of NLL impact factor
 - Implementation of NLL impact factors: numerical and conceptual issues
 - (Small) breaking of BFKL factorization at NLL level
- Numerical results
- Conclusions and outlook

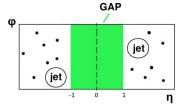
 Introduction
 NL description
 Numerical results
 Conclusions

 00000
 000000
 0

An important process for studying PT high-energy QCD and the Pomeron at hadron colliders [Mueller, Tang '87]

Final state:

- two jets with similar p_T
- large rapidity distance $Y \simeq \log(s/p_T^2)$;
- absence of any additional emission in central rapidity region (gap)



Introduction 00000

NL description

Numerical results

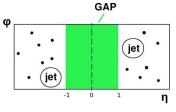
Conclusions

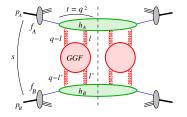
Mueller-Tang jets

An important process for studying PT high-energy QCD and the Pomeron at hadron colliders [Mueller, Tang '87]

Final state:

- two jets with similar p_T
- large rapidity distance $Y \simeq \log(s/p_T^2)$;
- absence of any additional emission in central rapidity region (gap)
 - Gap ⇒ mostly colour-singlet exchanges contribute to cross section
 - $Y \gg 1 \implies$ enhanced PT series $(\alpha_S Y)^n$ resummed into singlet BFKL GGF
 - In LLA factorization formula holds





 Introduction
 NL description
 Numerical results
 Conclusions

 00000
 000000
 0
 0
 0

Mueller-Tang jets at LO and LL

• LO amplitude: box + crossed diagrams projected onto colour-singlet $\Pi^{ab,a'b'} = \delta^{ab} \delta^{a'b'} / (N_c^2 - 1)$



∃ ► < ∃ ►</p>

Mueller Tang jets in next-to-leading BFKL

Introduction

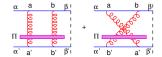
NL description

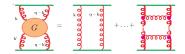
Numerical results

Conclusions

Mueller-Tang jets at LO and LL

- LO amplitude: box + crossed diagrams projected onto colour-singlet Π^{ab,a'b'} = δ^{ab}δ^{a'b'}/(N²_c - 1)
- Elastic amplitude at higher orders: affected by large logⁿ s due to gluon-ladder diagrams (UV and IR finite)
- All LL resummed in (colour-singlet) gluon Green function (GGF)





Introduction

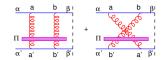
NL description

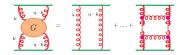
Numerical results

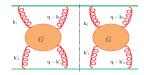
Conclusions

Mueller-Tang jets at LO and LL

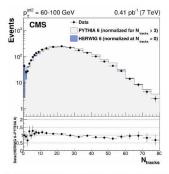
- LO amplitude: box + crossed diagrams projected onto colour-singlet Π^{ab,a'b'} = δ^{ab}δ^{a'b'}/(N²_c - 1)
- Elastic amplitude at higher orders: affected by large logⁿ s due to gluon-ladder diagrams (UV and IR finite)
- All LL resummed in (colour-singlet) gluon Green function (GGF)
- LL partonic cross section:
 2 GGF * 2 (trivial) impact factors
- Two outgoing partons to be identified with the (back-to-back) jets







Introduction	NL description	Numerical results	Conclusions
000●0		0000000	O
CMS analysi	s at 7 TeV		



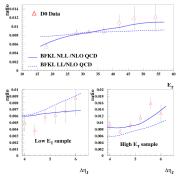
- Charged-particle multiplicity in the gap region between the tagged jets compared to PYTHIA and HERWIG predictions.
- HERWIG 6: include contributions from color singlet exchange (CSE), based on BFKL at LL.
- PYTHIA 6: inclusive dijets (tune Z2*), no-CSE.

≪ ≣⇒

 Introduction
 NL description
 Numerical results
 Conclusions

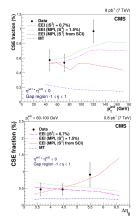
 0000
 000000
 0
 0

D0 and CMS analysis at 7 TeV



Left: LL & NLL BFKL at Tevatron [hep-ph/1012.3849].

 Ratio R = <u>NLL*BFKL</u> of jet-gap-jet events to inclusive dijet events as a function of p_t and the rapidity gap Y.



NLL* BFKL calculations different implementations of the soft rescattering processes (EEI models), describe many features of the data, but none of the implementations is able to simultaneously describe all the features of the measurement. Ekstedt, Enberg, Ingelman, [1703.10919]

< ロ > < 同 > < 三 > < 三 >

Introduction	NL description	Numerical results	Conclusions
00000	●0000	0000000	O
NL impact	factors		

• Compelling to include all NLL corrections into the game

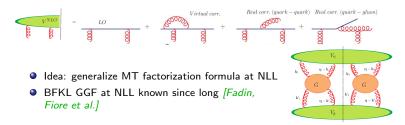
Mueller Tang jets in next-to-leading BFKL

▶ ≣ ∽०० Dimitri Colferai

-> -< ≣ >

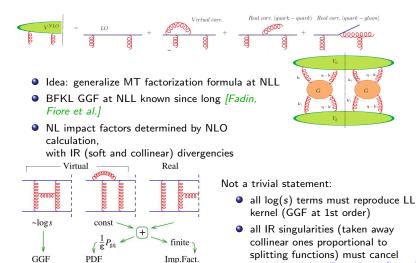
Introduction	NL description	Numerical results	Conclusions
00000	●0000	0000000	O
NL impact	factors		

• Compelling to include all NLL corrections into the game



Introduction	NL description	Numerical results	Conclusions
00000	●0000	0000000	O
NL impact	factors		

• Compelling to include all NLL corrections into the game



Introduction	NL description	Numerical results	Conclusions
00000	○●○○○	0000000	O
NI impact	factors		

$$\Phi(I_1, I_2, q) = \frac{\alpha_S^3}{2\pi(N_c^2 - 1)} \int_0^1 dz \int d^2 k \qquad \stackrel{p_1 \dots p_{abs}}{\underset{l_1 \oplus q}{\overset{l_1 \to z}{\underset{l_1 \oplus q}{\overset{l_1 \to z}{\underset{l_2 \oplus q}{\overset{l_1 \to z}{\underset{l_1 \oplus q}{\underset{l_2 \oplus q}{\overset{l_1 \to z}{\underset{l_2 \oplus q}{\underset{l_2 \oplus q}{\overset{l_1 \to z}{\underset{l_2 \oplus q}{\underset{l_2 \oplus q}{\underset{l_1 \\{l_2 \oplus q}{\underset{l_2 \oplus q}{\underset{l_2 \oplus q}{\underset{l_1 \atop_{l_1 \\{l_1 \atop_{l_1$$

• The calculation of NL impact factors for Mueller-Tang jets was performed by [Hentchinski, Madrigal Martinez, Murdaca, Sabio Vera, '14] using Lipatov's effective action (and confirmed by F.Deganutti and myself)

-∢ ⊒ ▶

Introduction	NL description	Numerical results	Conclusions
00000	○●○○○	0000000	O
MI impact	factors		

NL impact factors

$$\Phi(I_1, I_2, q) = \frac{\alpha_{\rm S}^3}{2\pi(N_c^2 - 1)} \int_0^1 dz \int d^2 k \qquad \stackrel{P_1}{\underset{l_1 \leftrightarrow I_2}{\underset{l_2 \leftarrow I_1}{\underset{l_2 \leftarrow I_2}{\underset{l_2 \atop{I_2}{\underset{l_2 \atop I_2}{\underset{l_2 \leftarrow I_2}{\underset{l_2 \atopI_2}{\underset{l_2 \leftarrow I_2}{\underset{l_2 \atopI_2}{\underset{l_2 \leftarrow I_2}{\underset{l_2 \leftarrow I_2}{\underset{l_2 \atopI_2}{\underset{l_2 \atop$$

- The calculation of NL impact factors for Mueller-Tang jets was performed by [Hentchinski, Madrigal Martinez, Murdaca, Sabio Vera, '14] using Lipatov's effective action (and confirmed by F.Deganutti and myself)
- Phase-space integration restricted by IR-safe jet algorithm (e.g., kt \simeq cone)
- The two partons in the same hemisphere form (at least) one jet:
 - $\Delta \Omega \equiv \sqrt{\Delta y^2 + \Delta \phi^2} < R \implies J = \{qg\}$ composite jet
 - $\Delta \Omega > R \Longrightarrow J = \{g\}$ and q outside jet cone or $J = \{q\}$ and g outside

NL description	Conclusions
00000	

Problem with NL impact factor

$$\Phi(I_1, I_2, q) = \frac{\alpha_{\rm S}^3}{2\pi(N_c^2 - 1)} \int_0^1 dz \int d^2 k \qquad \stackrel{P_1 \longrightarrow P_1 - k + q}{\underset{p_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q}} \times \stackrel{\text{h.c.}}{\underset{p_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q}} \times \frac{f_1 \longrightarrow P_2 - h + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 \longrightarrow P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 \longrightarrow P_1 - k + q} \times \frac{f_2 \longrightarrow P_1 - k + q}{\sum P_1 \longrightarrow P$$

- There is a problem in the C_A^2 term, due to $\int_0^1 dz/z$ integration
- If integration is not constrained, we have a divergence

NL description	Conclusions
00000	

Problem with NL impact factor

$$\Phi(I_1, I_2, q) = \frac{\alpha_{\rm S}^3}{2\pi(N_c^2 - 1)} \int_0^1 dz \int d^2 k \qquad \stackrel{P_1 \longrightarrow P_1 + q}{\underset{p_2 \longrightarrow P_1 - k + q}}}} \times \stackrel{\text{h.c.}}{(I_1 \leftrightarrow I_2)} \times \left\{ C_F^2 \frac{z^2 q^2}{k^2 (k - zq)^2} + C_F C_A f_1(I_{1,2}, k, q, z) + C_A^2 f_2(I_{1,2}, k, q) \right\}$$

- There is a problem in the C_A^2 term, due to $\int_0^1 dz/z$ integration
- If integration is not constrained, we have a divergence
- Such region $z \to 0$ corresponds to gluon in central (and backward) region, where the emission probability of the gluon turns out to be flat in rapidity: $\int_0^1 dz/z = \int_{-\infty}^{\log \sqrt{s}/k} dy$
- If we believe the IF calculation to be reliable at least in the forward hemisphere $(y > 0) \implies \int_0^{\log \sqrt{s}/k} dy = \int_{k/\sqrt{s}}^1 dz/z = \frac{1}{2} \log(s/k^2)$
- But a log(s) in IFs is not acceptable within the spirit of BFKL factorization

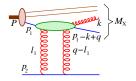
• = • • = •

	NL description		Conclusions
	00000		
<u> </u>	11.00	· · · · · ·	

Constraint on diffractive invariant mass

In order to solve this problem, [HMMS] constrain mass of diffractive system $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$

• In this case $z \gtrsim k^2 / M_{\text{max}}^2$ \implies finite z-integral $\sim \log(M_{\text{max}}^2/k^2)$

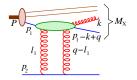


	NL description		Conclusions
	00000		
<u> </u>	11.00	 • • • • • 	

Constraint on diffractive invariant mass

In order to solve this problem, [HMMS] constrain mass of diffractive system $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$

• In this case $z \gtrsim k^2 / M_{\text{max}}^2$ \implies finite z-integral $\sim \log(M_{\text{max}}^2/k^2)$



This constraint avoids $\log s$ in IF, but it is experimentally unfeasible:

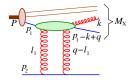
- Diffractive mass requires measuring outgoing proton or its remnants
- Diffractive mass cut effective if able to measure arbitrarily soft particle energies

	NL description		Conclusions
	00000		
<u> </u>	11.00	 • • • • • 	

Constraint on diffractive invariant mass

In order to solve this problem, [HMMS] constrain mass of diffractive system $M_X^2 \equiv (P+q)^2 < M_{\rm max}^2$

• In this case $z \gtrsim k^2/M_{\text{max}}^2$ \implies finite z-integral $\sim \log(M_{\text{max}}^2/k^2)$



This constraint avoids $\log s$ in IF, but it is experimentally unfeasible:

- Diffractive mass requires measuring outgoing proton or its remnants
- Diffractive mass cut effective if able to measure arbitrarily soft particle energies
- ... and it is definitely different from the JGJ experimental definition

Mueller Tang jets in next-to-leading BFKL

Violation of BFKL factorization

- What happens for MT jets? The theoretical argument: "colour-singlet momentum transfer \implies no log s is wrong
- Here colour-singlet either below or above

NL description 00000

 \implies log *s* unavoidable without constraints

Dimitri Colferai

Violation of BFKL factorization

- What happens for MT jets? The theoretical argument:
 "colour-singlet momentum transfer ⇒ no log s is wrong
- Here colour-singlet either below or above

NL description

 \implies log s unavoidable without constraints

- MT event selection constrains particles not to be emitted within the gap provided they are above some energy threshold *E*_{th} (cal resolution)
- Only particles below threshold can be emitted at any rapidity
- This prescription is IR safe because inclusive for $E_g < E_{
 m th}$

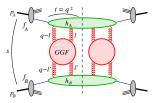
But gluons below threshold can have any rapidity $\implies \sigma \ni C_A^2 \frac{E_{th}^2}{F_{th}^2} \log \frac{s}{F_{th}^2}$

With such "minimal" experimental prescription, BFKL factorization is violated (impact factors depend on *s*). However violation is expected to be small.

NL description	Numerical results	Conclusions
	000000	

Results

- We go on and use NL IF and GGF for $d\sigma/dY$
- Numerical implementation requires 10-dimensional integrals



Introduction	NL description	Numerical results	Conclusions
00000		000000	0

Leading VS Next-to-leading cross section

We follow CMS setup:

- $\sqrt{s} = 14 \text{ TeV}$
- $E_J \ge 40 \text{ GeV}$
- $1.5 \leq |y_J| \leq 5$
- $3 \leq Y \equiv y_{J1} y_{J2} \leq 9$
- $y_{\mathrm{gap}} \in [-1,1] \rightarrow \Delta Y_{\mathrm{gap}} = 2$
- $E_{\rm thresh} = 1.0 \, {\rm GeV}$

.∋...>

 Introduction
 NL description
 Numerical results
 Conclusions

 00000
 00000
 0
 0
 0

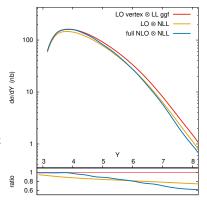
Leading VS Next-to-leading cross section

We follow CMS setup:

- $\sqrt{s} = 14 \text{ TeV}$
- $E_J \ge 40 \text{ GeV}$
- $1.5 \le |y_J| \le 5$
- $3 \leq Y \equiv y_{J1} y_{J2} \leq 9$

•
$$y_{\mathrm{gap}} \in [-1,1] \rightarrow \Delta Y_{\mathrm{gap}} = 2$$

- $E_{\rm thresh} = 1.0 \, {\rm GeV}$
- NLL corrections of the impact factors are negative
- $\sigma_{\rm full} \lesssim \sigma_{LL}$ with a slightly steeper decrease



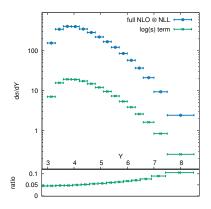
< ⊒ > _

Introduction	NL description	Numerical results	Conclu
00000	00000	000000	o
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Factorization violation

Contribution of the term $C_A^2 \log \frac{s}{E_J^2}$ that violates factorization:

- Violation of factorization is small, $\sim 6\%$
- Resummation of such logarithms not necessary for phenomenology

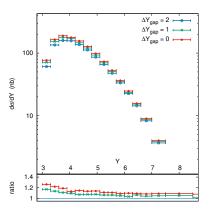


∍⊳

Introduction	NL description	Numerical results	Conclusions
00000		0000000	O
	2.171		

Dependence on gap width

- Cross section slightly increases while decreasing $\Delta\,Y_{\rm gap}$ and saturates with no gap
- Emission from singlet exchange in central region is dynamically suppressed



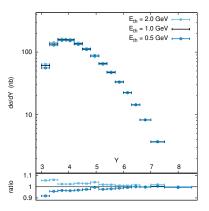
Introduction 00000

NL description

Numerical results

Energy threshold dependence

- Mild dependence on energy threshold of the gap
- Most of the dependence is due to soft dynamics (IR singularities) not to high-energy dynamics (log s terms)



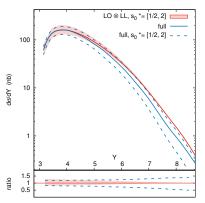
NL description

Numerical results 00000●0

Energy scale dependence

Energy scale s_0 is a parameter needed in order to define the $log(s/s_0)$

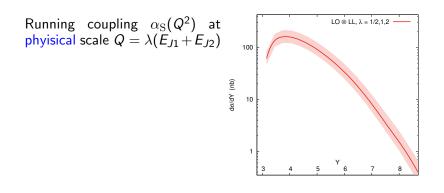
- Reduced dependence on energy scale at moderate Y
- which however increases at large Y



 Introduction
 NL description
 Numerical results
 Conclusions

 00000
 000000●
 0

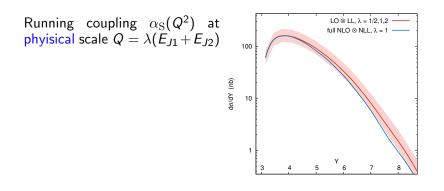
Renormalization scale dependence



э.

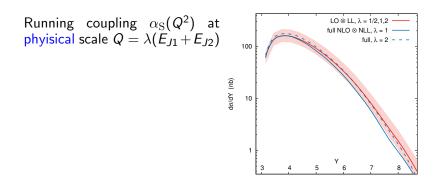
Introduction NL description Numerical results Conclusions occoo

Renormalization scale dependence



Introduction NL description Numerical results Conclusions occoo

Renormalization scale dependence

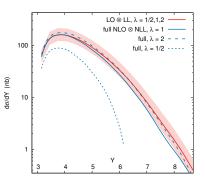


Introduction NL description Numerical results Conclusions ocooco

Renormalization scale dependence

Running coupling $\alpha_{\rm S}(Q^2)$ at physical scale $Q = \lambda(E_{J1} + E_{J2})$

- Renorm scale dependence still large
- Need for scale fixing procedure (BLM, PMS, ...)

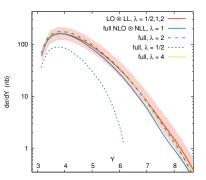


Introduction NL description Numerical results Conclusions 00000 00000 0

Renormalization scale dependence

Running coupling $\alpha_{\rm S}(Q^2)$ at physical scale $Q = \lambda(E_{J1} + E_{J2})$

- Renorm scale dependence still large
- Need for scale fixing procedure (BLM, PMS, ...)
- Minimum sensitivity reached at λ = 4



Introduction 00000	NL description	Numerical results	Conclusions •
Conclusions and outlook			

- Complete numerical implementation of MT jets at LHC in NLLA with collinear resummation of BFKL kernel; cross section slightly lower and steeper than in LLA
- Gap survival probability still to be taken into account
- Strictly speaking jet-gap-jet observable violates BFKL factorization in NLLA
- Nevertheless the violation is small and factorization formula is expected to work well for LHC (non-asymptotic) kinematics.
- Good stability w.r.t. gap/threshold parameters
- $\bullet\,$ Better description expected with proper renorm scale fixing (\simeq 4 times larger than natural scale)

Introduction 00000	NL description	Numerical results	Conclusions •
Conclusions and outlook			

- Complete numerical implementation of MT jets at LHC in NLLA with collinear resummation of BFKL kernel; cross section slightly lower and steeper than in LLA
- Gap survival probability still to be taken into account
- Strictly speaking jet-gap-jet observable violates BFKL factorization in NLLA
- Nevertheless the violation is small and factorization formula is expected to work well for LHC (non-asymptotic) kinematics.
- Good stability w.r.t. gap/threshold parameters
- Better description expected with proper renorm scale fixing (\simeq 4 times larger than natural scale)
- Improvements could include hadronization, resummation of log s term in IFs, and inclusion of gap survival probability