Photon-photon fusion and tau g-2 measurement in ATLAS

Melike Akbiyik (Uni Mainz)

On behalf of the ATLAS Collaboration

Diffraction and Low-x 2022, Italy, Corigliano, September 28th

JGU

Ultra-peripheral collisions

- Electromagnetic (EM) interactions become dominant at large impact parameters, $b>2R_A$, where R_A is the ion radius. Such collisions are usually referred to as ultra-peripheral collisions (UPC).
- EM fields of relativistic ions considered as fluxes of photons (they scale with $\sim Z^2$).
- **Described in a Equivalent Photon Approximation** (EPA) formalism.
- Cross-section is calculated by convolving the respective photon flux with the elementary crosssection for the process.

Photon-photon fusion and tau g-2 measurement in ATLAS

This talk will cover these new measurements of dilepton Pb production performed by ATLAS Collaboration in UPC **PbPb at 5.02 TeV :**

- **Exclusive dielectron production:** arXiv:2207.12781 (2022), submitted to JHEP
- Exclusive dimuon production: Phys. Rev. C 104 (2021) 024906
- Exclusive ditau production and measurement of the τ -lepton anomalous magnetic moment: arXiv:2204.13478, accepted by PRL

Notivation

Photon-photon fusion and tau g-2 measurement in ATLAS

Large general-purpose detector with almost 4π coverage :

- Inner detector $|\eta| < 2.5$ ($\eta = -\ln(\tan(\theta)/2.5)$ 2)))
- Muon system $|\eta| < 2.7$ (trig. 2.4)

Calorimetry out to $|\eta| < 4.9$

4

Zero-Degree-Calorimeters (ZDC) capture neutral particles with |n|>8.3

ATLAS detector

- Different processes present different activity in the forward region:
 - Exclusive dilepton production ions **remain intact** $p_{T,\mu} > 4$ GeV, $m_{\mu} < 2.4$
 - Background events with nuclear breakup
- **Three different classes** are defined based on the signal in the ZDC: **OnOn**, **XnOn** and **XnXn**.
- **The association** between given **ZDC signal** and given process is **nontrivial**:
 - Migrations due to ion excitation and presence of EM pile-up.

ZDC selection

PRC 104, 024906 (2021)

Photon-photon fusion and tau g-2 measurement in ATLAS

- Exclusive dilepton events are characterized by :
 - Two low-pT opposite sign leptons && otherwise empty detector.
 - Leptons are produced backto-back in azimuthal angle.
- ATLAS optimized to detect highenergy particles:
 - Particle reconstruction ulletefficiency in low energy region.

In

Event selection

Run: 365512 Event: 130954442 2018-11-09 07:56:44 CEST $p_{\pi}^{e1} = 8.2 \text{ GeV}$ $p_{\pi}^{e^2} = 7.4 \text{ GeV}$

	Muons	Electrons
t. Lumi [nb ⁻¹]	0.48	1.72
p _T ^ℓ > [GeV]	4	2.5
η _ℓ <	2.4	2.5
m _{ℓℓ} > [GeV]	10	5
р т <i>ll</i> <	2	2

Photon-photon fusion and tau g-2 measurement in ATLAS

Various background sources are considered for $\mu\mu/ee$:

- **Upsilon (nS)** production: STARlight+Pythia8 MC samples (only in dielectron measurement).
- Exclusive ditau production : STARlight+Pythia8 MC samples (only in dielectron) measurement).
- **Dissociative production of** *l+l-* **pairs:** Data-driven method (LPair / SuperChic4 + Pythia8 in pp collisions).

Photon-photon fusion and tau g-2 measurement in ATLAS

Background sources

Dimuons - background arXiv:2207.12781

- **Events** are **categorized** in 0n0n, Xn0n and XnXn classes.
- The data is compared with STARlight+Pythia8 simulation for $\gamma\gamma \rightarrow \mu^+\mu^-$ process with FSR and LPair for dissociative events (pp collisions).
- The **simultaneous fit** is performed in all ZDC topology classes.

Photon-photon fusion and tau g-2 measurement in ATLAS

Dimuons - results

- The cross-sections are **measured** as a function of $m\mu\mu$ (in 3 slices of $|y\mu\mu|$ and $|y\mu\mu|$ (in 3 slices of $m\mu\mu$).
- The data is **compared with** STARlight simulation for $\gamma\gamma \rightarrow \mu^+\mu^-$ process with FSR.
- The overall shape of the spectra is well described out to the highest masses
- Good agreement is found in central region of rapidity distribution.

arXiv:2207.12781

Photon-photon fusion and tau g-2 measurement in ATLAS

Initial photon fluxes

- The muon kinematics can be used to estimate initial photon energies:
 k_{min,max} = (1/2) m_{μμ} exp(± y_{μμ})
- The cross section is presented as a function of maximum and minimum photon energies.
- The data is compared with STARlight.
 - The starlight predictions are corrected in intermediate region **5-20 GeV**.
- Disagreement between the data and MC for lower k_{min} and higher k_{max}.

- The background samples for single dissociation from SuperChic4+Pythia8 are used instead of LPair.
- Fitting procedure similar to the one used in dimuon measurement.
- Small background contributions from ditau and Upsilon production also estimated.

Dielectrons- background

Good agreement with STARlight and SuperChic is observed, differences in the same regions as in detector-level plots.

Dielectrons - results

Photon-photon fusion and tau g-2 measurement in ATLAS

a_t - measurement strategy

- **Magnetic moment of the particle and its spin are related by g-factor:** μ =g q/2m **S**.
- These discrepancies are measured with lepton anomalous magnetic moments $a_{\ell} = (g-2)_{\ell}/2.$
- Currently the best constraints for at are from DELPHI experiment: -0.052 < a_τ < 0.013 (95% CL), EPJC 35 (2004) 159
- Measurement of aτ in HI UPC collisions proposed
- in several publications:
 - F. del Águila, F. Cornet, J.I. Illana, PLB 271 (1991) 256 L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda,
 - A. Szczurek, PLB 809 (2020) 135682

Photon-photon fusion and tau g-2 measurement in ATLAS

Ditau event selection

- **Signal τ-leptons** are **low-energetic**, typically with **p**_T < 10 GeV.
- Events classified based on the charged τ -lepton decay products.
- **Three signal categories:** μ + 1 track, μ + 3 tracks, and μ + e.
- **Single muon trigger** used to record signal events with muon pT > 4 GeV.
- **Exclusivity requirements:**
 - Veto on forward neutron activity (using 0n0n configuration based on ZDC signal).
 - For μ + 1 track and μ + 3 tracks signal regions: veto on additional low-pT tracks and low-pT clusters.

Photon-photon fusion and tau g-2 measurement in ATLAS

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

+ 3 tracks

Ditau events

 $\gamma\gamma \rightarrow \tau\tau$ event candidate YY

Photon-photon fusion and tau g-2 measurement in ATLAS

- Main background contributions from dimuon production and diffractive photonuclear interactions.
 - Data driven estimation of diffractive photonuclear events
- Background from $\gamma\gamma \rightarrow \mu\mu (\gamma)$ production estimated using MC simulation, constrained by a data CR.
- Pre-fit distributions in the two muon CR show good agreement of data and MC.

Backgrounds

Photon-photon fusion and tau g-2 measurement in ATLAS

Observation of exclusive ditau production

- **at value is extracted**: Using a profile likelihood fit using the muon p_T distribution.
- Simultaneous fit combining all signal regions and dimuon control region:
 - Dimuon control region ($\gamma\gamma \rightarrow \mu\mu$) events) used to reduce systematic uncertainty from the photon flux.
- Calculations are based on the same parameterization as was used in previous LEP measurements.
- Clear observation (\gg 5 σ) of

process.

Photon-photon fusion and tau g-2 measurement in ATLAS

- Expected 95 % CL limits combined fit: $-0.039 < a_{\tau} < 0.020$.
- The **best fit value** is $a_{\tau} = -0.042$, with the corresponding 95% CL interval being (-0.058, -0.012) U (-0.006, 0.025).
- Double-interval structure due to interference of SM and BSM amplitude.
- The result is largely limited by statistics.
- Constraints similar to DELPHI (EPJ C 35 (2004) 159).

arXiv:2204.13478

Photon-photon fusion and tau g-2 measurement in ATLAS

- The exclusive dilepton production was measured using data collected in 2015 and 2018 with the ATLAS detector.
- The results from the dimuon and dielectron measurements are **consistent** although they have slightly different definitions of the fiducial region.
- The dielectrons and dimuons measurements provide valuable constrains for theoretical approaches in the modeling of the initial photon flux.
- **Activity in the forward region** could be measured by the ZDC. This should provide constraints for impact-parameter dependence of dilepton.
- $\gamma \gamma \rightarrow \tau \tau$ production was observed by ATLAS.
- The measurement of the **τ-lepton anomalous magnetic moment is competitive** with previous measurements:
 - improvement in precision expected with more data (Expect to have 7 nb⁻¹ for LHC Run 3 for PbPb data)

Photon-photon fusion and tau g-2 measurement in ATLAS

23

Ultra-peripheral collisions

Advantages of UPC heavy-ion collisions:

- UPC events are very clean and ideal for precision studies (very low hadronic pileup - exclusive selections possible) - opening physics opportunities for QED studies at hadron collider.
- Increased cross-sections wrt to pp system (low pT particles can be triggered and reconstructed).

Photon-photon fusion and tau g-2 measurement in ATLAS

Notivation

- **Exclusive dilepton production** is one of the fundamental processes in photon-photon interactions.
- **Dileptons** ($\mu\mu/ee$) production are **benchmark** processes for other photon-induced processes.
- Reduction of systematic uncertainties: measurement of the τ -lepton anomalous magnetic moment.
- **Important background :** Dielectron production in light-by-light scattering.

- The probability of producing a given ZDC category depends on the value of the impact parameter, b (based on the Coulomb excitation probabilities ~ $1/b^{2}$.
- With different selections on the ZDC topology, we probe different ranges of dilepton mass and impact parameters, as photon fluxes vary with b.

ZDC fractions

fonon fractions - dielectrons

- The 0n0n class expected **very pure** at least in terms of dissociative background.
- Selection of the OnOn sample: Events are required to have low energy deposits in the ZDC (below 1 TeV on each side).
- There is no ZDC simulation in the MC samples, so a dedicated approach, correcting also for EM pileup is used.
- To be able to compare data with the prediction, the weight is applied as a function of truth variables for the MC samples.

arXiv:2207.12781

fXn0n and fXnXn fractions - dimuons

Phys. Rev. C 104 (2021) 024906

The corrected f_{Xn0n} and f_{XnXn} fractions are compared with the **STARlight predictions**.

Sep 28 2022

Detector level control plots

The data sample is ~93% pure, with about 10% more counts in data than in the MC prediction.

arXiv:2207.12781

Photon-photon fusion and tau g-2 measurement in ATLAS

arXiv:2204.13478

The result is largely limited by statistics.

Photon-photon fusion and tau g-2 measurement in ATLAS

Sep 28 2022

 a_{τ}