



#### Recent ALICE Results on UPCs

#### **Alexander Bylinkin**

#### **On behalf of the ALICE Collaboration**

Diffraction and Low-x Workshop, 24-29<sup>th</sup> September 2022 Corigliano Calabro, Italy



#### Outline

- Motivation
- ALICE Detector
- Vector meson photoproduction in pPb UPCs
- Photo-nuclear reactions in PbPb UPCs
- Vector meson production XeXe UPCs
- Prospects for Run 3 & 4 measurements
- Summary

Photon induced processes in heavy ion collisions

- Nuclei "miss" each other (b > 2R)
- Electromagnetic interaction dominates over strong
- Photon flux grows with the square of the charge, Z<sup>2</sup>







#### Probes of nuclei in UPC

- UPCs at LHC: the most energetic photon-nuclei interactions
- Low-x physics and search for the nonlinear parton dynamics (saturation regime)



#### Exclusive vector meson photoproduction

• Photoproduction is sensitive to the gluon density at LO

$$\frac{d\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xG(x,Q^2)]^2$$
$$\sigma_{\gamma p \rightarrow VMp} = \frac{1}{b} \frac{d\sigma_{\gamma p,A \rightarrow VM p,A}}{dt}|_{t=0}$$
• Energy of the  $\gamma p$  collision

 $W_{\gamma p}^2 = 2 \cdot E_p \cdot M_{VM} \cdot \exp(-y)$   $E_p - \text{proton beam energy}$   $M_{VM} - \text{mass of the vector meson}$ y - rapidity of the vector meson

• Probe gluon distributions in the proton at low-*x* 

 $x = (M_{VM}/W_{\gamma p})^2$ 







#### Exclusive vector meson photoproduction

• Photoproduction is sensitive to the gluon density at LO

$$\frac{d\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xG(x,Q^2)]^2$$

$$\sigma_{\gamma p \to VMp} = \frac{1}{b} \frac{d\sigma_{\gamma p, A \to VM \, p, A}}{dt}|_{t=0}$$

- Energy of the  $\gamma p$  collision
  - $W_{\gamma p}^2 = 2 \cdot E_p \cdot M_{VM} \cdot \exp(-y)$
  - $E_p$  proton beam energy  $M_{_{V\!M}}$  – mass of the vector meson
  - y rapidity of the vector meson
- Probe gluon distributions in the proton at low-*x*

 $x = (M_{VM}/W_{\gamma p})^2$ 

• Photonuclear cross section shows power law dependence with  $W_{\gamma p}$   $\sigma \propto W^{\delta}_{\gamma p}$ 











#### $J/\psi$ photoproduction in pPb UPC

The cross section of J/ $\psi$  photoproduction as a function of photon-proton c.m.s. energy allows the comparison with other experiments at HERA and LHC.

### Exclusive J/ $\psi$ cross section: energy dependence



• Power law fit to ALICE data Exponent:  $\delta = 0.70 \pm 0.04$ 

 $\rightarrow$  access to  $\gamma p$  interactions

- The same trend as observed at HERA and LHCb
- Agreement with models:
  - **JMRT NLO**: DGLAP formalism with main NLO contributions
  - CCT: Saturation in an energy dependent hot spot model
  - NLO BFKL: BFKL evolution of HERA values (HERA Fit 2) with a photoproduction scale
  - CGC: colour dipole model

### Exclusive J/ $\psi$ cross section: energy dependence

New preliminary results with **Run 2** data

Good agreement with previous measurements



### Dissociative J/ $\psi$ cross section: energy dependence

First measurement of the dissociative cross section (with the proton break up) at the LHC!



- Compatible with HERA measurements
- Well described by CCT, J. Cepila, J. G. Contreras and J. D. Tapia Takaki Phys.Lett. B766 (2017) 186 13

#### Probes of nuclei in UPC: J/ $\psi$ and $\psi$ ' in PbPb UPC

The cross section of coherent  $J/\psi$  and  $\psi$ ' photoproduction as a function of rapidity or |t| can probe the nuclear shadowing and saturation effects.





Models with shadowing (EPS09,
 Leading Twist Approximation)
 and saturation (Glauber-Gribov Hot Spot):
 → Describe only central and most forward data



- *EPS09* and *LTA* agree with the data
- **GG-HS** overpredicts
- Balitsky-Kovchegov (b-BK) agrees

#### Coherent J/ $\psi$ and $\psi$ ' photoproduction vs rapidity



• Nuclear suppression factor (exctracted from the central region data):



The same for  $J/\psi$  and  $\psi$ ': corresponds to the central value for EPS09

#### |t| dependence of exclusive $J/\psi$



• The Fourier transform of the  $|t| \sim p_T^2$  spectra gives the distribution of interaction sites within the nucleus



#### |t| dependence of exclusive $J/\psi$



Photon flux used to calculate the photonuclear cross sections from the UPCs

$$\frac{d^2 \sigma_{J/\psi}^{\text{coh}}}{dy dp_T^2} \bigg|_{y=0} = 2n_{\gamma \text{Pb}}(y=0) \frac{d\sigma_{\gamma \text{Pb}}}{d|t|}$$

Cross section below Pb nuclear form factor model (**STARlight**) and closer to the shape predicted by shadowing (**LTA**) or saturation (**b-BK**) models.

Future measurements will allow to distinguish between these predictions.



#### Coherent $\rho^0$ photoproduction in XeXe UPC

Comparison between PbPb and XeXe UPCs allows to study the A-dependence

#### Coherent $\rho^0$ photoproduction: A-dependence



- Power-law fit:  $\alpha = 0.96 \pm 0.02$
- Below coherent ↔ Shadowing effect
- Value close to incoherent is a coincidence caused by large shadowing effect
- Black-disc limit distant at  $W_{\gamma A} = 65 \text{ GeV}$
- Models agree with the data:
- GKZ shadowing
- CCKT saturation

А

ALI-PUB-496203

#### Prospects for Run 3 and Run 4 measurements

### Outlook: Run 3 & 4

- L increase 1 nb-1 (Run 2)  $\rightarrow$  13 nb-1 (Runs 3+4)
- Continuous readout  $\rightarrow$  higher data collection efficiency
- Siginificant detector upgrades
- Proposed O-O run  $\rightarrow$  new system size

| Meson, channel                                              | $\sigma^{	t Pb-Pb}$ | N <sup>Tot</sup>    | <b>Ν</b> <sup> η &lt;0.9</sup> | <b>Ν</b> <sup>-4 &lt; η &lt; -2.5</sup> |             |
|-------------------------------------------------------------|---------------------|---------------------|--------------------------------|-----------------------------------------|-------------|
| $ ho^0 \rightarrow \pi^+ \pi^-$                             | 5.2 b               | $68 \times 10^9$    | $5.5 	imes 10^9$               | -                                       |             |
| $\rho' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$                 | 730 mb              | $9.5 	imes 10^9$    | $210 	imes 10^6$               | -                                       | -<br>-<br>- |
| $\phi \to K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$ | 0.22 b              | $2.9 	imes 10^9$    | $82 \times 10^{6}$             | -                                       |             |
| $J/\psi \rightarrow \mu^+ \mu^-$                            | 1.0 mb              | $14 	imes 10^6$     | $1.1 \times 10^{6}$            | $600 	imes 10^3$                        | .o/m        |
| $\psi(2S) \rightarrow \mu^+ \mu^-$                          | 30 µb               | $400 \times 10^{3}$ | $35 \times 10^3$               | $19 \times 10^3$                        | 0           |
| $\Upsilon(1S) \rightarrow \mu^+ \mu^-$                      | 2.0 μb              | $26 \times 10^{3}$  | $2.8 \times 10^{3}$            | 880                                     | ]           |



- New differential measurements:
  - $\frac{\mathrm{d}^2\sigma}{\mathrm{d}y\mathrm{d}|t|}$
  - Angular distributions
  - Proton-dissociative production
- New analyses:
  - O-O UPCs
  - Υ(1S)
  - Incoherent vector meson production

# FoCal in Run 4

FoCal is a new high granularity calorimeter to be installed in the very forward region.



#### 21

\*Studies by A. Bylinkin, D. Tapia Takaki

### UPC measurements with FoCal in Run 4

A J/ψ detected in FoCal within 3.4 < y < 5.8: 1.1 <  $W_{\gamma p}$  < 3.6 TeV, ↔ 8.10<sup>-6</sup> > x > 7.10<sup>-7</sup>



Measurement at unprecedentedly high energies will allow to distinguish between the theoretical models and significantly improve the precision.

## UPC measurements with FoCal in Run 4

# Measurement of $\psi$ ' with FoCal will also be possible.

\*Studies by A. Bylinkin, D. Tapia Takaki



| Vector meson   | $\sigma(p+Pb \to p+Pb+V)$ | $\sigma(3.4 \le \eta_{1,2} \le 5.8)$ | Yield                  |
|----------------|---------------------------|--------------------------------------|------------------------|
|                |                           | $p \rightarrow FoCal$                | $p \rightarrow FoCal$  |
| $J/\psi$       | 98 μb                     | 400 nb                               | 60,000                 |
| $\psi(2S)$     | 16 µb                     | 8.9 nb                               | 1,300                  |
| $\Upsilon(1S)$ | 220 nb                    | 0.38 nb                              | 60                     |
|                |                           | $Pb \rightarrow FoCal$               | $Pb \rightarrow FoCal$ |
| $J/\psi$       | 98 μb                     | 36 nb                                | 5,400                  |
| $\psi(2S)$     | 16 μb                     | 0.53 nb                              | 80                     |
| $\Upsilon(1S)$ | 220 nb                    | 0.67 pb                              | $\sim 0$               |

Theoretical studies (by M. Hentschinski *et.al* [arxiv:2203.08129])

predict a clear onset of saturation effects in the  $\psi$ ' to  $J/\psi$  cross section ratios as a function of c.m.s. energy.

### Summary

- pPb UPCs
  - Exclusive cross section agrees with previous results from HERA and LHCb
  - Proton dissociative cross sections measured for the first time at LHC
- PbPb UPCs
  - Models with shadowing or saturation describe vector meson cross sections in the central and most forward regions within uncertainties
  - |t|-dependence is far below STARlight prediction
- XeXe UPCs
  - A dependence is consistent with shadowing and saturation models
- Prospects for Run 3 & 4
  - Many new exciting measurements to be done
  - Possibilities to look for saturation effects with the new FoCal detector at Run 4

#### Thank you very much for your attention!