New constraints on PDFs with CMS data

Luis F. Alcerro (On behalf of the CMS Collaboration) l.alcerro@cern.ch

Department of Physics & Astronomy University of Kansas

Introduction

- Collinear factorization allows us to separate long- and short-distance contributions
- PDFs:
- \blacksquare Intrinsic properties of nucleons \rightarrow process independent
- Usually extracted from data: DIS, Drell-Yan, jets, top quark

One of the main sources of uncertainty in hadronic collisions

- Critical to precision measurements at hadron colliders.
- Several state of the art PDF sets at NNLO

Jun Gao DIS22

Introduction

Hard scattering processes used to constrain PDFs:

Jets: g, q PDFs at mid-high x

Single top: b and light quarks PDFs

DY+Jets: q, g

Top quark pair: g at high x

V + heavy quark: s-quark content

S, d

Introduction

constrain PDFs

- Inclusive jet production extensively studied @ ATLAS and CMS at different \sqrt{s}
- Directly sensitive to gluon distribution
- Since α_{S} Since α_{S} A second second α_{S} and α_{S} and α_{S} is the α_{S} second α_{S} and $\alpha_$

Methods

 \blacksquare Data sample corresponds to 36.3 fb⁻¹ (33.5 fb⁻¹) recorded in 2016 for events with jets clustered with anti-kt algorithm (AK) with R = 0.4 (0.7) Inclusive jet double-differential xsec is calculated

$$\frac{d^2\sigma}{dp_T dy} = \frac{1}{\mathscr{L}} \frac{N_{\text{jets}}^{\text{eff}}}{\Delta p_T \Delta y}$$

CMS-PHO-EVENTS-2021-020

Results

- Xsec compared to QCD predictions.
- Significant differences
 at high pT → need for
 higher PDFs
 sensitivities at large x

QCD profiling analysis

- AK7 jet result is used for this analysis. In addition $t\bar{t}$ xSecs from CMS EPJ C 80, <u>658 (2020)</u>.
- PDF profiling with CT14 at NLO and **NNLO**
- Significant improvement in gluon PDF in full x range and medium x range for sea distribution.

 $t\bar{t}$ reduces uncertainties at high x values.

Impact on α_{s}

In addition to the PDF profiling, impact of the measurement on α_{c} is investigated at NLO and NNLO.

[®] Profiling analysis repeated including $t\bar{t}$.

Simultaneous PDF and α_{s} determination at NNLO:

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1170 \pm 0.0014 (\text{fit}) \pm 0.0007 (\text{model}) \pm 0.0008 (\text{scale}) \pm 0.0001 (\text{param.})$

 $\alpha_s(m_Z) = 0.1170 \pm 0.0018$ (PDF) ± 0.0035 (scale) $\alpha_s(m_Z) = 0.1130 \pm 0.0016$ (PDF) ± 0.0014 (scale)

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1154 \pm 0.0009({\rm PDF}) \pm 0.0015({\rm scale})$

QCD fit

 AK7 jet result together with the inclusive HERA DIS, at NNLO.
 Impact of this CMS jet result is compared with a fit with only HERA data.
 Uncertainties are significantly reduced.

W+c quark production CMS-SMP-18-013 (Submitted to EPJ C)

Direct probe of strange PDF. Previously studied by ATLAS and CMS at

 $\sqrt{s} = 7$ and 13 TeV.

• First results using data at $\sqrt{s} = 8$ TeV from 2012.

Methods

- **Data sample of 19.7** pb^{-1} of pp.
- Signal always OS while background is 50% OS - 50% SS. \rightarrow Strategy: OS-SS subtraction
- W bosons measured via leptonic decay.
- Charm jets:
 - Semileptonic (SL): muon inside jet
 - Secondary Vertex (SV): secondary vertex inside jet.

Cross sections

- Inclusive $\sigma(W + c)$ cross section and cross section ratio $R_s^{\pm} = \frac{W^+ + \overline{c}}{W^- + c}$ are obtained.
- $\circ \sigma(W + c)$ in agreement within theory uncert.
- R_{s}^{\pm} higher than theory, but within 2-3 σ .
- Differential xSec: theory below measurement (possible NNLO corrections).

W+c quark production CMS-SMP-18-013 (Submitted to EPJ C)

QCD analysis

- HERA DIS xSecs, CMS W
 lepton charge asymmetry (7, 8 TeV) and CMS W+c (7,13 TeV) are used with this result.
 Strange distribution and suppression ratio R_s = $\frac{s + \overline{s}}{\overline{d} + \overline{u}}$ are obtained.
- New data clearly improves uncertainties.
- New results in agreement also with other global PDFs analyses.

tt production

Update in ℓ + *jets* with 2017 data expected

Summary

- QCD analysis using inclusive jet data @ 13 TeV shows a significant reduction of the gluon PDF uncertainties in the full x range.
- New QCD analysis at NLO using W+c production xSec @ 8 TeV in addition to previous results of DIS, W+c at different energies and W lepton asymmetry further constrains strange distribution and R_s .
- $t\bar{t}$ important probe for high x.

Backup slides

Relative uncertainties in the double-differential cross section

PDF parametrization

$$\begin{split} x \mathbf{g}(x) &= A_{\mathbf{g}} x^{B_{\mathbf{g}}} (1-x)^{C_{\mathbf{g}}} (1+D_{\mathbf{g}} x+E_{\mathbf{g}} x^{2}), \\ x \mathbf{u}_{v}(x) &= A_{\mathbf{u}_{v}} x^{B_{\mathbf{u}_{v}}} (1-x)^{C_{\mathbf{u}_{v}}} (1+E_{\mathbf{u}_{v}} x^{2}), \\ x \mathbf{d}_{v}(x) &= A_{\mathbf{d}_{v}} x^{B_{\mathbf{d}_{v}}} (1-x)^{C_{\mathbf{d}_{v}}}, \\ x \overline{\mathbf{U}}(x) &= A_{\overline{\mathbf{U}}} x^{B_{\overline{\mathbf{U}}}} (1-x)^{C_{\overline{\mathbf{U}}}} (1+D_{\overline{\mathbf{U}}} x), \\ x \overline{\mathbf{D}}(x) &= A_{\overline{\mathbf{D}}} x^{B_{\overline{\mathbf{D}}}} (1-x)^{C_{\overline{\mathbf{D}}}} (1+E_{\overline{\mathbf{D}}} x^{2}). \end{split}$$

W+c quark production CMS-SMP-18-013 (Submitted to EPJ C)

Systematics

Impact of the sources of systematic uncert

Source

Lepton efficiency
Jet energy scale and resolution *p*^{miss} resolution
Pileup modelling *µ* in jet reconstruction efficiency
Secondary vertex reconstruction
Secondary vertex charge determ
Charm fragmentation and decay
Charm fragmentation functions
Background subtraction
PDF
Limited size of MC samples

Integrated luminosity

PDF parametrization

$$\begin{split} xg(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}}, \\ xu_{v}(x) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} \left(1+E_{u_{v}} x^{2}\right), \\ xd_{v}(x) &= A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x\overline{u}(x) &= A_{\overline{u}} x^{B_{\overline{u}}} (1-x)^{C_{\overline{u}}} \left(1+D_{\overline{u}} x\right), \\ x\overline{d}(x) &= A_{\overline{d}} x^{B_{\overline{d}}} (1-x)^{C_{\overline{d}}}, \\ x\overline{s}(x) &= A_{\overline{s}} x^{B_{\overline{s}}} (1-x)^{C_{\overline{s}}}. \end{split}$$

tainty in the combined o	r(W+c)) measurement.
--------------------------	--------	----------------

	Uncertainty [%]
	0.7
	0.8
	0.3
	0.4
7	0.9
n efficiency	1.8
nination	1.0
y fractions	2.6
	0.3
	0.8
	1.0
	0.6
	2.6

