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Introduction

I I will predominantly be discussing the findings of [arXiv:2112.04574] (Dembinski, MK,

Langenbruch, Schmelling) [1]

I Born from discussions in the LHCb Statistics Group and the innovations of

Schmelling [2]

I A fresh look at the sPlot paper - [NIM A 555 (2005) 356] (Pivk and Le Diberder) [3]

I The concept was first mentioned by Barlow - [J. Comp. Phys. 72 (1987) 202] [4]

I Important related developments on parameter estimates when fitting (s)weighted data

by Langenbruch - [arXiv:1911.01303] [5]
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Corresponding software tools

I The developments in the paper [1] have corresponding software implementations

I The python sweights package (readthedocs) has implementations of:
I sWeights: in each of the “Variants” discussed below
I COWs: in any of the scenarios discussed below
I Sandwich Estimator: the full (and approximate) covariance correction when fitting

(s)weighted samples

I Also provide a wrapper for p.d.f.s defined in RooFit

I The U-statistic permutation (USP) test is implemented in the python resample

package

I Implementation of the sandwich estimator in iminuit is a WIP
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https://github.com/sweights/sweights
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Setting up the problem

I In particle physics we often want to extract some properties of an observed signal

I But we typically have a non-neglible background contribution, usually distinguished

using invariant mass

I The properties we want to extract are in some other dimension
I Lifetime: Decay time distribution
I Spin: Angular distributions
I Amplitudes: Dalitz distributions

I Often we don’t know (or don’t want to have to understand) the background

distribution in these other dimensions
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Setting up the problem

So what choices do we have?

I Fit the full nD distribution
I Requires a suitable model description for each component in each dimension

I Sideband subtraction or “slicing”
I Not statistically very powerful
I Requires discriminant and control variables factorise

I sWeighting
I Might think of this as “per-event” slicing
I Requires discriminant and control variables factorise

I Custom Orthogonal Weight functions (COWs)
I Might think of this as “per-event” slicing
I Does not necessarily require factorisation
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Part 1: sWeights

Part 1: sWeights
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sWeights as orthogonal functions

I Require signal and background components both factorise in the discriminant and

control variables

I In other words our total p.d.f. has the form

f(m, t) = zgs(m)hs(t)

Signal

+ (1− z)gb(m)hb(t)

Background

(1)

I We then want to find a weight function, ws(m), which when multiplied by f(m, t)

projects out hs(t)

zhs(t) =

∫
ws(m)f(m, t)dm (2)

=

∫
ws(m) [zgs(m)hs(t) + (1− z)gb(m)hb(t)] dm (3)

= zhs(t)

∫
ws(m)gs(m)dm + (1− z)hb(t)

∫
ws(m)gb(m)dm (4)

I Therefore we require∫
ws(m)gs(m)dm = 1

ws(m) is normal to gs(m)

and

∫
ws(m)gb(m)dm = 0

ws(m) is orthogonal to gb(m)

(5)
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Choosing the orthonomal functions

I There are infinitely many choices for ws(m) but an optimal choice minimises the

variance over the discriminating p.d.f. g(m).

I This is a constrained optimisation problem solved with Lagrange multipliers

(calculation is in the back up). The solution (for the signal component) is

ws(m) =
αsgs(m) + αbgb(m)

g(m)

Signal weight function

(6)

where the constants αs and αb are obtained by solving(
Wss Wsb

Wsb Wbb

)
·

(
αs

αb

)
=

(
1

0

)
where Wxy =

∫
gx(m)gy(m)

g(m)
dm. (7)

I You can then follow this through for any component and generalise to(
Wss Wsb

Wsb Wbb

)
W

k`

·

(
αs βs

αb βb

)
Ak` = W−1

k`

=

(
1 0

0 1

)
. (8)
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Application to a finite sample

I The above derivation assumed knowledge of the true p.d.f. to compute the W -matrix

I In practise these are unknown and would be replaced by a sample estimate (typically

obtained from a fit)

I The plugin estimate for W is then simply

Ŵxy =

∫
ĝx(m)ĝy(m)

ĝ(m)
dm

sWeights “Variant A”

(9)

I This can also be replaced with a sum over observations (for a large sample) because∫
φ(m)dm =

∫
g(m)

φ(m)

g(m)
dm = 〈φ(m)

g(m)
〉

expectation value

→ 1

N

∑
i

φ(mi)

g(mi)

arithmetic mean

(10)

I So an alternative computation is

Ŵxy =
1

N

∑
i

ĝx(mi)ĝy(mi)

ĝ(mi)2

sWeights “Variant B”

(11)

I This also has the nice property that the sum of weights is the number of events i.e.∑
i ŵs(mi) = Nẑ = N̂s
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Application to a finite sample

I There is then an interesting connection between the result in Eq. (11) and an

extended maximum likelihood (EML) fit

I Turns out that the W -matrix is closely related to the covariance matrix of an EML fit

with only the yields floating(
α̂s β̂s

α̂b β̂b

)
=

1

N2

(
Css Csb

Csb Cbb

)
sWeights “Variant C”

(12)

I Most of the above (at least the finite sample case) was already shown in the sPlot

paper [3] although we take a different approach

I They find the link with the correlation matrix in Eq. (12) and name that as the
“sWeight”

I The implementation in TSPlot uses the Minuit / HESSE covariance matrix directly

(numerical inaccuracies)
I The implementation in RooStats::SPlot directly computes Eq. (11)
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Application to a finite sample

I The original sPlot formalism [3] comes with a few limitations
I All shape parameters must be fixed
I All yields are freely floating and not expressed as fractions
I Can only get weights for the unbinned sample you have fitted
I The RooStats implementation enforces the above

I The advantanges with what we have found is that you simply need to provide a
description of the p.d.f.s and you get back a weight function for each component
I Shapes and yields can be determined however you want (even with constraints)
I Can perform fit to a different sample to the one you use to extract weights (e.g. wider

fit range)
I Can perform the fit to a binned sample (if there are many events) and still extract a

weight per-event

I There are still some caveats which apply to both
I The description for each component must factorise in the disciminant and control

variables
I Factorisation means independence (which is more than just not-linearly-correlated)
I However what we will see shortly (COWs) can circumvent this as well

11/50



Properties of different sWeight variants

Variant A

I If the true p.d.f.s are known, ĝx(m) = gx(m), then the Wxy in Eq. (9) produce an

unbiased estimate of ws(m) with minimum variance

I Therefore, the sum of weights in bins of the control variable are uncorrelated and the

variance in each bin is the sum of squared weights,
∑
i ŵs(mi)

2

I This greatly simplifies parameter estimates when fitting the weighted data

Variant B

I The sum of weights reproduces the fitted yield,
∑
i ŵs(mi) = Nẑ = N̂s, which is

almost but not exactly true for Variant A

I But even if the true p.d.f.s are known, ĝx(m) = gx(m), then the sums of weights in

bins of the control variable are correlated (although in practise the effect is very small)

I The correlation means that the variance in each bin is slightly smaller than the

estimate from the sum of squared weights

I In practise the true shapes, gx(m), are rarely known and so in either case care must

be taken when fitting the weighted data

→ it is wrong to assume the weights are unbiased in finite samples 12/50



How do we extract parameter estimates from the weighted data?

I This deserves, and requires, a seminar in its own right

I Fitting weighted data (with uncorrrelated weights) in bins is straight forward

I But bins are only uncorrelated when using Variant A and if the true shapes, gx(m),

are known

I In any other case you need a correction to the covariance

I This has been realised by Langenbruch who has provided a detailed description of how

to deal with both the binned and unbinned fits to weighted data [5]

→ the first calculation to account for correlations between the sWeight estimation

and parameter estimation

I For an unbinned fit we want to maxmise the weighted likelihood by solving∑
i

wi
∂ lnhs(ti;φ)

∂φk

!
= 0 (13)

I This is not a product of probabilities so the inverse of the Hessian matrix does not

provide an estimate of the covariance
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How do we extract parameter estimates from the weighted data?

I For the unbinned case construct the quasi-score function,

S(λ) = S(Ns, Nb,θ,Wss,Wsb,Wbb,φ)

S(λ) =



∂ lnL(Ns, Nb,θ)/∂Ns
∂ lnL(Ns, Nb,θ)/∂Nb
∂ lnL(Ns, Nb,θ)/∂θ1

...

∂ lnL(Ns, Nb,θ)/∂θn
ψss(Ns, Nb,θ,Wss)

ψsb(Ns, Nb,θ,Wsb)

ψbb(Ns, Nb,θ,Wbb)

ξ1(θ,Wss,Wsb,Wbb,φ)
...

ξp(θ,Wss,Wsb,Wbb,φ)


(14)

Sandwich estimator

The “sandwich estimator”,

Cλ = E

[
∂S

∂λT

]−1

E
[
SST

]
E

[
∂S

∂λT

]−T
(15)

provides the full unbiased covariance

For Variant A with known shapes

Fewer terms in S(λ)

For Variant B with known shapes

Simplifies to

Ĉφ =H−1H ′H−T −H−1EC′ETH−T

(16)
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sWeights in practise

sWeights in practise
Some example applications on toy Monte Carlo
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An example application on toy MC

I A simple example with signal (background) distributed normally (exponentially) in a

discrimant variable, invariant mass

I The control variable, decay time, is distrbuted exponentially (normally) for signal

(background)
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An example application on toy MC

I Extract the weight functions using the description above

I All variants give similar performance - with some small differences
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An example application on toy MC

I Extract the weight functions using the description above

I All variants give similar performance - with some small differences
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An example application on toy MC

I Now apply the weights to the data

I And fit or extract parameter of interest in the control dimension

I Including the appropriate correction to the weighted data

I Minimal loss in precision compared to a full 2D fit (in this case)
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The performance over an ensemble
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Walk through a more complex example

I Now consider several factorising components which overlap in mass

I Common in heavy flavour physics when final state is mis-reconstructed

I Have six components, some of which peak under or near the signal

I Use a Dalitz space as the control variable
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Walk through a more complex example

I Extract the weights as above for each of the six components

I Inspect control distributions when each weight is applied

I Get a nice recovery of the true distributions
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Walk through a more complex example

I Get a nice recovery of the true distributions
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Part 2: COWs

Part 2: COWs
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What if our p.d.f. doesn’t factorise?

I Check for independence - need both signal and background to factorise for sWeights

I Checking for correlation is not a sufficient test of statistical independence

I We recommend the U-statistic permutation (USP) test [6] → powerful and efficient

I Implemented in the python resample package

I Input is a 2D histogram of the sample in the discriminant and control variables

I Output is a p-value for consistency with the independent hypothesis
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There are also ongoing developments in this area (Schmelling, Dembinski, Langenbruch, MK, Lyons,

Berrett, Samworth, Junk) 25/50

https://resample.readthedocs.io


What if our p.d.f. doesn’t factorise?

I Check for independence - need both signal and background to factorise for sWeights

I Checking for correlation is not a sufficient test of statistical independence

I We recommend the U-statistic permutation (USP) test [6] → powerful and efficient

I Implemented in the python resample package

I Input is a 2D histogram of the sample in the discriminant and control variables

I Output is a p-value for consistency with the independent hypothesis

4 2 0 2 4 6
x

7.5

5.0

2.5

0.0

2.5

5.0

7.5

y

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
U-statistic

0

200

400

600

800

independent hypothesis
input data

x,y are correlated: p-value=0.0001

There are also ongoing developments in this area (Schmelling, Dembinski, Langenbruch, MK, Lyons,

Berrett, Samworth, Junk) 25/50

https://resample.readthedocs.io


COWs

I Let’s generalise even more to include a non-factorising efficiency and a non-factorising

true p.d.f. so that our observed data is distributed like

ρ(m, t) = Neε(m, t)f(m, t)

true distribution

with Ne = 1/

∫
ε(m, t)f(m, t)dmdt

ensure proper normalisation

(17)

I Kolmogorov-Arnold representation theorem [7, 8] states any function f(m, t) can be

represented by a finite sum of factorising terms i.e.

f(m, t) =

n∑
k

zkgk(m)hk(t) with
n∑
k

zk = 1 (18)

I So can associate the first j terms to our signal and the remaining n− j to our

background(s)

f(m, t) =

j−1∑
k=0

zkgk(m)hk(t)

Signal

+

n∑
k=j

zkgk(m)hk(t)

Background

(19)

I Clearly the more accurate you can be the fewer terms you need (and this is problem

specific)
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COWs

I Applying the same arguments as above (with orthonormal functions) any single

component hk(t) of f(m, t) can be isolated by a weight function

wk(m) =

n∑
l=0

Aklgl(m)

I(m)
with A−1

kl =Wkl =

∫
gk(m)gl(m)

I(m)
dm (20)

I We call I(m) the variance function and it can be any non-zero function you like!
I In the paper [1] we show that any choice of I(m) gives unbiased weights
I Notice that Akl is the α, β matrix given above in Eq. (8)

I It follows that

n∑
i=0

AkiWij = δkj

Unitary condition

and

∫
wk(m)gl(m)

I(m)
dm = δkl

Ortho-normality condition

(21)

I In the case of a non-uniform efficiency, ε(m, t) 6= 1, then the weights to project out

each component, hk(t), are wk(m)/ε(m, t).

I For the total signal and background components then

ws =

j−1∑
k=0

wk(m)

ε(m, t)

Signal weight function

and wb =
n∑
k=j

wk(m)

ε(m, t)

Background weight function

(22)
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COWs

I For any problem, the basis functions, gk(m), and variance function, I(m), determine

a set of Custom Orthonormal Weight functions (COWs)

I I(m) = 1 is a valid but suboptimal choice

I Can we look for some more optimal choices?

A. Choice that minimises the variances of the ẑk:

IA(m) = q(m) =

∫
ρ(m, t)

ε2(m, t)
dt (23)

I This can be obtained from a 1/ε2(m, t) weighted histogram of the data
I In the case of a single bin this means I(m) → 1
I A sufficiently fine-binned histogram will approach q(m)

B. Choice where ẑk are the ML fit estimates:

IB(m) =
∑
k

ẑkgk(m) (24)

I Can be obtained from a fit to the data (weighted by 1/ε(m, t)) or iteratively in a short time
I This is the sWeights solution when ε(m, t) = 1

I To extract a COW you never have to perform a fit!
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COWs

I Comparing these two choices of variance function when there is a uniform efficiency

IA(m) =

n∑
k=0

zkgk(m)

Minimal variance of ẑk

and IB(m) =

n∑
k=0

ẑkgk(m)

ML estimates of ẑk

(25)

I The sWeights solution, IB(m), is the maximum-likelihood estimate of the

theoretically optimal weight function, IA(m) (asymptotically equivalent)

I A rather nice finding is that mismodelling the signal density does not bias the

weights it will only increase the variance (proof in the paper [1])

I Practically, non-factorising background (or signal) components can be handled by a

suitable sum of polynomail terms (recommend the Bernstein basis)

When choosing your COWs you just need to pick

1. A signal density with large, preferably maximal, overlap with the true signal density

2. A background density modelled by a truncated sum of polynomials

3. A variance function obtained directly from the data

I This works regardless of whether the true p.d.f. factorises
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Milking the COWs

Milking the COWs
Some example applications on toy Monte Carlo
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Some toy examples with COWs

I Now we can consider a non-factorising background with a factorising signal

I This is a very extreme (and probably highly non-physical) example
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Some toy examples with COWs

I First we try the classic sWeights → which fails
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Some toy examples with COWs

I Then COWs with up to 4th order polynomials for background, the true signal and

I(m) = 1 → which works
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Some toy examples with COWs

I And then COWs with up to 4th order polynomials for background, the wrong signal

and I(m) = 1 → which works but only for the signal weights
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Some toy examples with COWs

I And then COWs with up to 4th order polynomials for background, the true signal and

I(m) = q(m) → which works
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Some toy examples with COWs

I Now we can also consider on top of this a non-factorising efficiency term

I More like the real use case in HEP but still highly non-physical
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Some toy examples with COWs

I Once again compare classic sWeights with a COW (4th order, same signal, I(m) = 1)

sWeights
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Some toy examples with COWs

I Extract the weight functions

sWeights
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Some toy examples with COWs

I Fit the weighted distribution in t

sWeights
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So what did we learn?

I COWs do not require any specific fitting

I You just need to choose

1. A signal density with large, preferably maximal, overlap with the true signal density

2. A background density modelled by a truncated sum of polynomials

3. A variance function obtained directly from the data

I Any non-factorising component can be dealt with an appropriate sum of polynomials

I For accurate signal weights, modelling the background is what is important (the signal

choice is not), and vice-versa

I The variance function is arbitary

I Better choices of the signal density, variance function and fewer polynomials in the

background will provide a smaller variance of the weights
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But we should really check this on ensembles right?

I Assess performance of various scenarios with slope parameter pull: (λtrue − λfit)/σλfit

I Compare sensitivity using the equivalent sample size: (
∑
i wi)

2/
∑
i w

2
i /N
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Summary

Summary
Putting the COWs to sleep
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Recommendations

Does the 
signal 

factorise?

YES Does the 
background 
factorise?

NO Does the 
background 
factorise?

YES Classic sWeights 
Variant A

COWs with 
approximate signal 
model, background 

polynomials, variance 
function from data

NO

COWs with signal 
polynomials, 

background model, 
variance function from 

data

Full COWs

YES

NO
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Conclusions

I I have presented the findings documented in “Custom Ortogonal Weights functions

(COWs) for Event Classification” [arXiv:2112.04574]

I We take a fresh look at sWeights and derive new formula for their application

I We describe some of the limitations of the classic sWeights approach

I We show that sWeights are a specific case of a more general class of COWs

I Show that COWs can be used to derive (s)weights for non-factorising problems and

problems with non-uniform efficiency

I Provide closed formulas for computing the covariance of fits to (s)weighted data
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Conclusions

There is an old saying that with sufficient

orders of polynomial you can fit an elephant

With sufficient orders of polynomial you

don’t even need a fit to extract a COW
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Optimal choice for ws(m)

I There are infinitely many choices for ws(m) but a sensible (optimal) choice is the one

which has minimal variance over the discriminating p.d.f. g(m) where

g(m) =

∫
f(m, t)dt = zgs(m) + (1− z)gb(m) (26)

I Thus the expectation and variance are

〈ws(m)〉 =
∫
ws(m)g(m)dm = z (27)

〈ws(m)2〉 − 〈ws(m)〉2 =

∫
ws(m)2g(m)dm− z2 (28)

I Minimise using Lagrange multipliers and known constraints to find extremum of

L =

∫
ws(m)2g(m)dm− z2 (29)

− 2αs

(∫
[ws(m)gs(m)− 1]dm

)
− 2αb

(∫
ws(m)gb(m)dm

)
(30)
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Optimal choice for ws(m) continued

I Using variational calculus:

δ

∫
ws(m)φ(m)dm =

∫
δws(m)φ(m)dm (31)

δ

∫
ws(m)2φ(m)dm =

∫
2ws(m)δws(m)φ(m)dm (32)

I Now want to find where the variation is minimal i.e. where

δL = 2

∫
δws(m) [ws(m)g(m)− αsgs(m)− αbgb(m)] dm = 0 (33)

I This is only satisfied for any continous δws(m) if the integrand in the brackets is zero

and thus

ws(m) =
αsgs(m) + αbgb(m)

g(m)
(34)
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