

HSE Occupational Health & Safety and Environmental Protection unit

Cable Ageing Research project

HSE Seminar

19th May 2022

J. Gascon on behalf of CARE project team

Introduction

History

Source: RIACWG

(-2002)

CERN store

(GS)

EN-EL

PH

(Experiments)

Users

ucturing of material section

ort - D. RICCI

essive reduction of resources

CERN 89-12 Technical Inspection

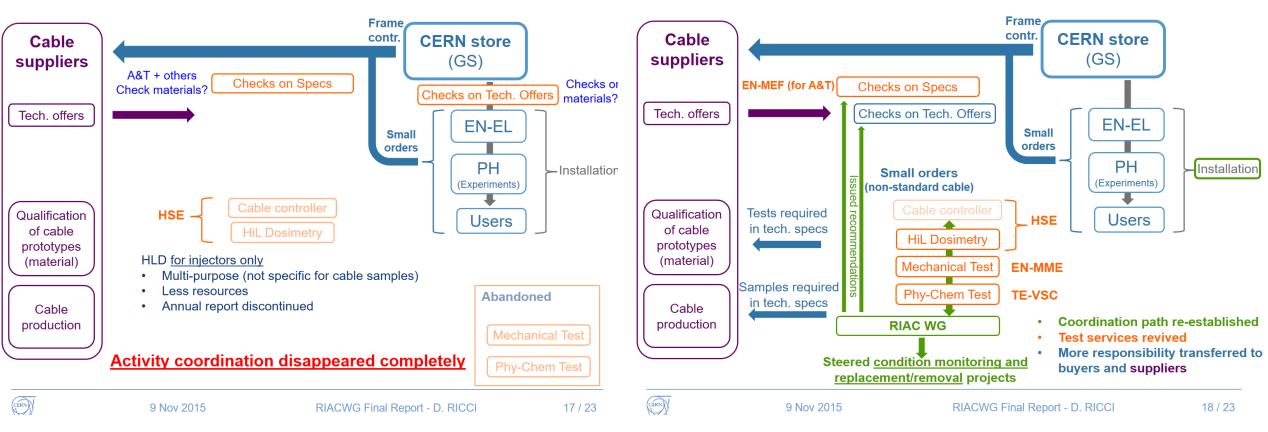
and Safety Commission 31 December 1989

Frame TIS Cable contr. **CERN** store suppliers (GS) ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE S CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH **Checks on Specs** Tech. offers Checks on Tech. Offers **EN-EL** Small Cable controller orders PH Installation (Experiments) C.C. ➡ COMPILATION OF RADIATION Witness Qualification DAMAGE TEST DATA Users of cable Material Section Tests and prototypes PART I. 2nd EDITION: TIS: Technical Inspection & Safety Division (material) Halogen-free cable-insulating materials Requirements Mechanical Test Fully equipped with tools and staff to produce: Sample tests Phy-Chem Test Cable • Routine & Long term radiation INDEX DES RÉSULTATS D'ESSAIS production test programs **HiL Dosimetry** DE RADIORÉSISTANCE Data analysis & reports **Documentation & publications** I'e PARTIE, 2º ÉDITION: (eq. the "yellow" book) Matériaux d'isolation de câbles exempts d'halogène CERN 9 Nov 2015 **RIACWG Final Report - D. RICCI** 15/23 H. Schönbacher and M. Tavlet

Historical perspective (until 1997)

CERN

4 / 42


16/23

Installation

Historical perspective (after 2002)

Historical perspective (Today: 2015)

History

CARE Working Group 2016-2019

- Mandated by S. Baird
- Leader: F. Szoncso
- Members: T. Wijnands, I. Petrova, D. Ternova, R. Kerschner

CARE Project 2019-

- Mandated by D. Forkel-Wirth Endorsed by B. Delille
- Leader: J. Gascon
- Team members:

Artem DANYLIUK Chemical Eng. Senior fellow

Berta RUIZ PALENZUELA Materials Eng. PJAS

Federica BORTOLETTO

Materials Eng. Junior fellow

Dr. Marija KRANJCEVIC PhD in CS Senior fellow

Basics

Cable applications at CERN

- HV power
- LV power
- DC power (Power converters & magnets)
- Instrumentation & Control
- Speciality (RF, experimental areas, others)
- Safety (lighting, monitoring, safety systems)
- IT & office (IEC/EU compliant)
- Grounding

Cable Stressors

- Temperature
- Humidity
- Chemicals (oxygen, ozone, lubricants,...)
- **Ionising radiation** (UV included)
- Electrical (ohmic heating)
- Mechanical (bending, squeezing, vibration)

Cable degradation is a combination of stressors effects !!!!

Cable main components

- Conductors (electrical): copper, aluminium
- Insulation (electrical): polymers (XLPE, XLPO, EPR,...)
- Shielding (electrical): foil (AI) or braided (Cu, AI)
- Jacket (mechanical, chemical, fire): polymers (PP, PUR, PE,...)

Structural components

- Fillers, binder or bedding: mechanical stability
- Tapes or semiconductors: electrical, mechanical, fire or identification
- Armouring: mechanical protection

Medium-voltage submarine cable, XLPE insulated

Typical design of a medium-voltage submarine cable with a maximum voltage up to 36 kV

Type: 2XS2YRAA

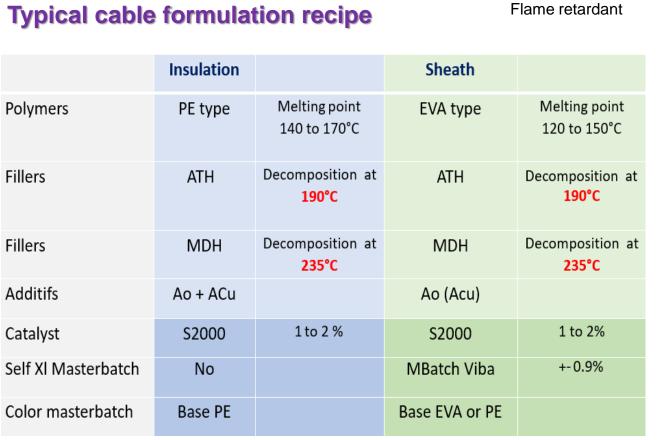
- Conductor: copper, circular stranded compacted, longitudinal watertight by filling with a sealing compound (optional)
- 2. Conductor screening: extruded semi-conductive compound
- 3. Insulation: XLPE
- Insulation screening: extruded semi-conductive compound
- 5. Screen: copper tapes
- 6. Separator: plastic foil
- 7. Sheath: PE
- 8. Fillers: polypropylene strings
- 9. Binder tapes

- 10. Bedding: polypropylene strings
- 11. Armour: galvanized round steel wires
- Serving: hessian tapes, bituminous compound, polypropylene strings, lime wash

Polymer types used in cable manufacturing

- Ethylene vinyl acetate (EVA)
- Cross-linked polyethylene/polyolefin (XLPE / XLPO)
- Low and High density polyethylene (LDPE / HDPE)
- Ethylene propylene based elastomers (EPR / EPDM)
- Polypropylene (PP)
- Polyphenylene oxide (PPO)
- Polyphenylene ether (PPE)
- Butyl rubber (BR)
- Polyimide (Kapton®)
- Silicone rubber (SiR)
- Polyether ether ketone (PEEK)
- Polyurethane rubber (PUR)

Additives (antioxidants, flame retardants, stabilizers): know-how of cable manufacturers !!!



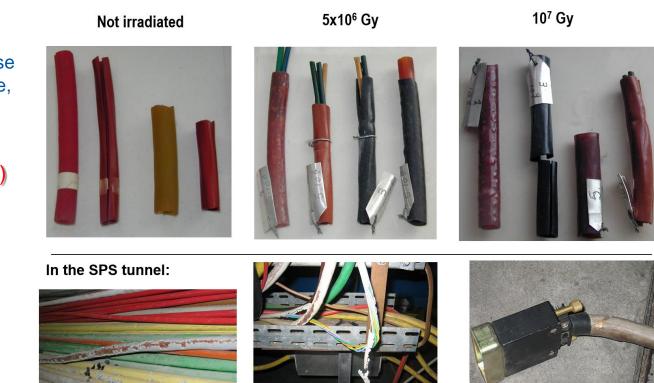
(halogen free)


Cable manufacturing

Typical cable formulation recipe

FILLERS

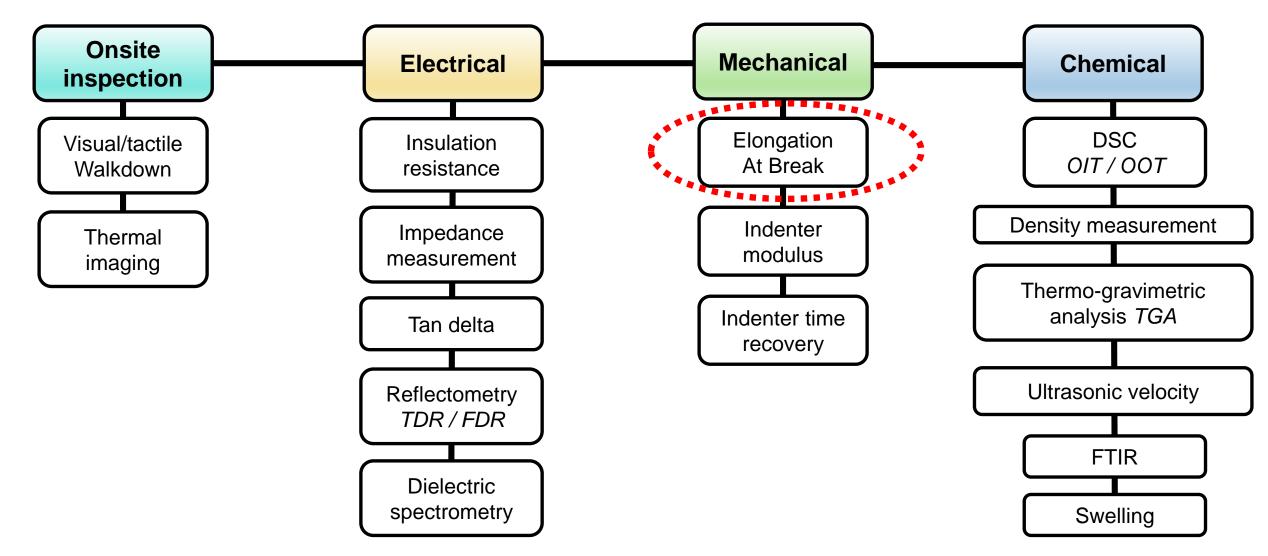
ATH: Alumina Trihydrate MDH: Magnesium Hydroxide


* Source: NEXANS Cables

Radiation effects

Ionizing radiation effects on Polymers

- Formation of free radicals: chemical structure, crystallinity, dose rate, solvent content, additives, plasticizer, stabilizers, temperature, oxygen levels, humidity.
- Formation of hydrogen & light hydrocarbon
- Formation of C-C bonds between molecules (crosslinking)
- Rupture of C-C bond (chain scission)
- Increase in unsaturation
- Breakdown of crystalline structure
- Discoloration
- Oxidation


Synergistic effect

Collective stressors effects higher than stressors effects separately (e.g. temperature + radiation)

Testing techniques on cable ageing

CARE Project

What is CARE

□ Long-lead <u>Research</u> programme on cable ageing

- □ Oriented to Rad-Hard cables
- □ Focussing mainly on new cables procurement

□ Predictive maintenance oriented to reduce cable replacements

□ Enhancing decision making process in terms of expected cables lifetime

Main Objective: extend cable lifetime procuring the most appropriate cables for CERN operations

- Determining cable "weathering" conditions (cable stressors)
- Defining appropriate technical requirements and tests procedures
- Providing Quality control & acceptance criteria
- Assessing cable degradation during beam operation i.e. condition monitoring
- Tracking logbook during all cable lifecycle i.e. complete cable life data over years
- Establishing lifetime models for cable from cable life data analysis

CARE Structure

U WP1 Project Management

- Project management documentation
 - ✓ Minutes, presentations, collaboration
 - ✓ Management reports, deliverables

WP2 Cable procurement

- Technical requirements for cable procurement
 - ✓ Tests procedures
 - ✓ Qualification criteria
 - ✓ Acceptance criteria

WP3 Data management

- Database documentation
 - ✓ Cable samples and specimen codification
 - ✓ Managing Tests records, data sheets, TS, etc
 - ✓ Information storage & tracking in CERN tools
- Data analysis
 - ✓ Correlations, statistics
 - ✓ lifetime models

WP4 Condition monitoring

- Radiation calculations
 - ✓ FLUKA simulations
 - ✓ Interactions R2E
- Artificial irradiation
 - ✓ Technical specifications, R2M interactions
 - ✓ Preparation of samples
- Natural irradiation
 - ✓ Management of samples in tunnels
 - ✓ Preparation of samples

WP5 Testing

- Tests activities
 - ✓ Sample conditioning
 - ✓ Testing: TT, DSC, FTIR, Thermal ageing, etc
 - ✓ Test records in database
- Tests techniques
 - ✓ Exploring new techniques
 - ✓ Developing Procedures for procurement

CARE Stakeholders

- EN-MME: expertise in mechanical tests;
- **TE-VSC:** expertise in chemical tests;
- EN-EL: cable procurer (machine);
- **BE-EA:** cable procurer (experiments);
- **TE-ABT:** special cable user;
- SCE-SCC: cable procurer (CERN stores);
- **SY-STI:** Radiation machine (R2E, R2M);
- ATS-DO: CERN Projects (HL-LHC);
- HSE-RP: radioactive waste management

- □ Steering committee EDMS 2594070
 - **B. Delille,** head of the HSE unit (chair);
 - D. Ricci, representing all cable users;
 - S. Sgobba, mechanical expert EN-MME;
 - M. Taborelli, chemical expert TE-VSC;
 - C. Garino, CERN stores SCE-SCC;
 - J. Borburgh, electrical testing expert SY-ABT;
 - R. Garcia, electrical testing expert SY-STI;
 - J. Gascon, CARE project leader;
 - **A. Danyliuk,** CARE member (sci. secretary);
 - Y. Donjoux, DPO HSE Unit

CARE Activities

□ Fields of work

- Qualification process for cable procurement within HL-LHC project (High priority)
 - ✓ Preparing detailed test procedures
 - Establishing qualification criteria and acceptance criteria for cables on ageing (radiation)
 - ✓ Preparation of MS for Rad-hard cable (new 3.5MGy cable category)
- CERN Standardisation Technical Sub-Committee for cables & connectors
 - ✓ Part of the subcommittee
 - ✓ Contribution on technical requirements for radiation hardness & quality assurance

Support on Cable Quality control

- ✓ Supporting SCE-SSC on quality control for cables delivered at CERN (on best effort approach)
- ✓ Some cables delivered from India manufacturer within framework contract signed by CERN to be tested (1st CPR Class Cca)
- ✓ Technical advice to SCE-SCC on tests to be outsourced (external labs)

Cable assessment

- ✓ Expertise on requests from CERN users tests on old cables installed in high radiation areas
- ✓ Cable Assessment Request (CAR) is prepared including technical report and tests results performed.
- $\checkmark\,$ Started in 2020, we have already dealt with 10 requests.

□ HL-LHC project discussions

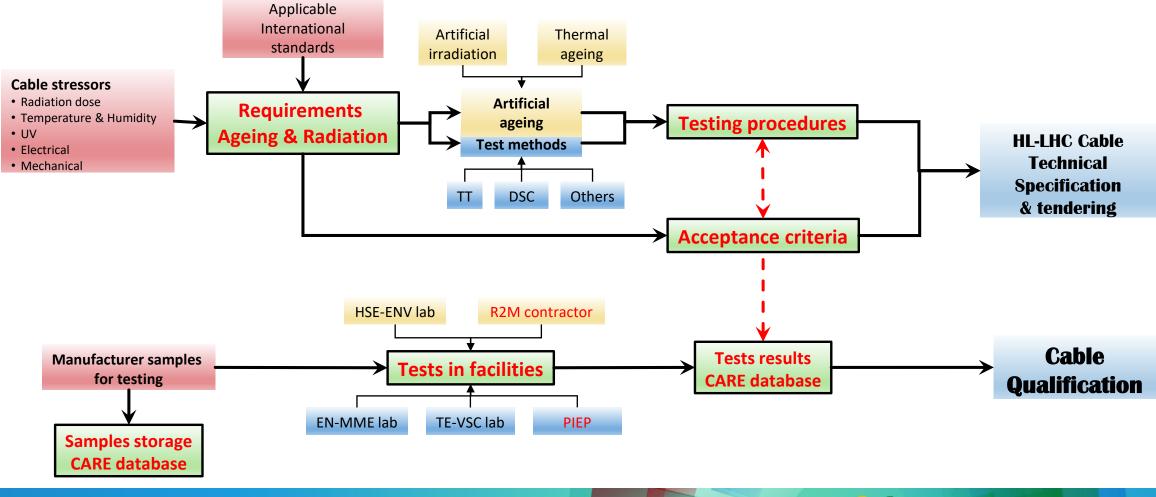
- Benchmarking in similar labs (EDMS 2520530)
 - ✓ ESS, ESRF, DESY (XFEL), ITER were contacted
 - ✓ Labs are not same radiation requirements (radiation levels, availability & accessibility)
 - ✓ Qualification cables samples seems to be appropriate for qualification purposes
 - ✓ Use of cables from Vendor's catalogue best option
- New radiation resistant cable category
 - ✓ SSI establishes 500kGy (100kGy operation) & 10MGy (2MGy operation) categories
 - ✓ After R2E simulations few cables will be irradiated beyond 700kGy
 - ✓ Create cable radiation category around 3.5MGy (700kGy operation) following benchmarking

Cable Procurement strategy

- ✓ Pre-survey among cable manufacturers on price factor for 3.5MGy & 10MGy cables
- ✓ Endorsed by CERN management and project management
- ✓ MS by June 2022 to qualify cable manufacturer according turnover, production capabilities, radiation resistant experience
- Before tendering, manufacturers (reduced number) to provide cable samples for radiation qualification (November 2022)
- $\checkmark~$ 16 weeks for ageing (radiation) qualification by July 2022
- ✓ Cables for general purposes (500kGy) not scoped to be qualified


Some typical numbers from suppliers:		
Lapp-Kabel (PU)		0.5 MGy
Lapp-Kabel (EPR)		1 MGy
Helukabel (PU, HM2, TM7)		1 MGy
Huber+Suhner RADOX® (RX125-XLPolyolefin Copolyme	r) 1 -	3 MGy
Marmon (XLPE + CSPE, certified to Class 1E, IEEE-323)		2 MGy
Habiatron (XLPolyolefin, certified IEEE-323 + 383)		2.3 MGy
Axon (Poliax®-PEI)		3 MGy
Huber+Suhner RADOX® (TPU)		5 MGy
Axon (Neutrax®-PEEK)		5 MGy
Axon (Kapton [®] -Polyimide)	10 -	20 MGy

Source: ESS


21/42

CARE vs HL-LHC Project

□ CARE plan schedule in September 2021

CARE Qualification process

Qualification readiness

- Team experience on tests at CERN
 - ✓ Performed around 3000 Tensile Tests (TT)
 - ✓ Performed around 200 Differential Scanning Calorimetry tests
 - ✓ Microscopy on defectives samples (MME lab)
 - ✓ Thermal ageing (BE-EA & HSE-ENV oven)
 - ✓ FTIR on old artificial irradiated cable and tunnels (TS1+ & TDC2)

Tests externally

- ✓ Thermal ageing & TT in PIEP (Portugal collaboration) to converge on tests procedure & results
- ✓ Swelling tests in University of Brescia (EDMS no 2310744)

Test Facilities

- ✓ MME lab: TT, Microscopy
- ✓ VSC lab: DSC, TGA
- ✓ ENV lab: FTIR & oven
- ✓ PIEP (till 2023): TT, DSC, TGA , FTIR

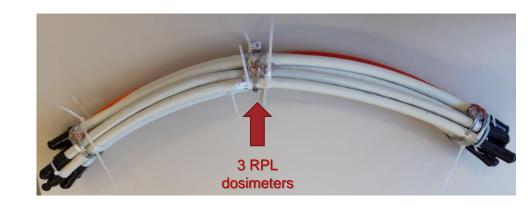
Qualification readiness

- Artificial irradiation campaigns with cable bundles
 - \checkmark R2M framework contract used for 2 campaigns
 - ✓ Facility for 1st campaign Germany
 - ✓ Facility for 2nd campaign France
 - ✓ Difficulties due to COVID (facilities overbooked for medical)
 - ✓ 1st campaign sent out in May 2021- Cable bundles received in September 2021
 - ✓ 2nd campaign sent out in October 2021- Cable bundles received in May 2022
 - ✓ Finalising technical report on 1st campaign
 - ✓ Starting sample preparation for tests on 2nd campaign

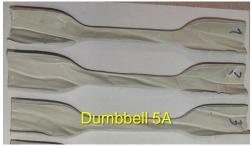
CERN H1211 Geneva 23 Witzerland Engine	ering Department	Image: 0.4 FINAL REFERENCE 20-08	CÉRN CHI211 Geneva 23 Switzerland	rator Systems	2.0 FINAL REFERENCE 21-02
1	echnical Requirement Irradiation test	5	Т	echnical Requirement Irradiation test	5
Cable irradiati	20-08 on test to deriv	e Cable Ageing		21-02 liation test to d ond test at low	
This document describes the procedure related to the rad suppliers and explain the ran radiated by ⁶⁰ Co source wi ≥ MGy.	liation resistance of 3 cable diation requirements listed	types from 5 different in IS23. Cables will be	qualification procedure r from 5 different supplier IS23. Cables and materi ⁶⁰ Co gamma source with at a dose rate of 1 kGy// at a dose rate of 3.6-5 k dose rate effects in cable	Abstract as the cable irradiation c elated to the radiation resi s and explain the radiation als for cable manufacturing 5 dose steps in range betwe 1. This test follows a previo Gy/h (irradiation test 20-08 samples. KEYWORDS 2MGy #cables #HL #LHC #doseral	stance of 3 cable types requirements listed in will be irradiated using een 0.1 MGy and 2 MGy, us campaign performed) and aims at assessing
DOCUMENT PREPARED BY:	DOCUMENT CHECKED BY:	DOCUMENT APPROVED BY:	DOCUMENT PREPARED BY:	DOCUMENT CHECKED BY:	DOCUMENT APPROVED BY:
David Vázquez [HSE-OHS-IB] Artem Danyliuk [HSE-OHS-IB]	Jose Gascon [HSE-OHS-IB]	Matteo Ferrari [SY-STI-TCD]	David Vázquez [HSE-OHS-IB] Artem Danyliuk [HSE-OHS-IB]	Jose Gascon [HSE-OHS-IB]	Matteo Ferrari [SY-STI-TCI

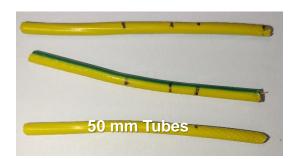
- □ 1st Irradiation campaign objectives (bundles received in September 2021)
 - Type of cables & manufacturers

- ✓ NE48 type includes 2 different manufacturers to assess influence of manufacturer
- ✓ PH3SJ type from Polycab manufacturer (contract signed by CERN stores) to assess radiation hardness
- ✓ CGN50 type produced with popular Megolon S304 (radiation resistant)
- Dose rate influence 1Gy/s (~3.6kGy/h)
 - ✓ 5 Dose steps 0.1 0.2 0.5 1 2 MGy increase data
 - ✓ Confirm degradation trend of each cable type & manufacturer
 - ✓ Confirm cable degradation around 500kGy
- Ageing methods
 - ✓ 3 Combinations: Radiation only , Thermal ageing & radiation later, Radiation & thermal ageing later
 - ✓ Thermal ageing 168h as requested in IEC-60502
 - ✓ Assess influence of cable stressors and combination of them
- Pilot campaign
 - ✓ Bundles dosimetry (3 dosimeters per bundle) & dose from facility
 - $\checkmark\,$ Get experience for cable qualification campaign in future



□ 2nd irradiation campaign objectives (bundles received in May 2022)


- Type of cables & manufacturers
 - ✓ NE8 & NE48 types from same batch than 1st campaign
 - ✓ NF12, SVA3 & TFA3 type included as samples irradiated naturally in TS1+ & TDC2 tunnels
- Dose rate lower ~1kGy/h
 - ✓ Same dose steps 0.1 0.2 0.5 1 2 MGy
 - ✓ Confirm cable degradation around 500kGy is independently of dose rate
- ageing methods
 - ✓ Same as 1st campaign
- Dosimetry
 - ✓ 2 extra RPL dosimeters per bundle + 2 RPLs for facility measurement
- Pilot campaign 2
 - ✓ Dose rate effect
 - ✓ Fix parameters to be retained for HL-LHC qualification
 - ✓ Confirm shielding effect and dosimetry
 - ✓ Correlate all results with 1st campaign ones


□ Tensile Tests (TT)

- Procedure
 - ✓ CARE procedure (EDMS no 2705496) for specimens preparation and test
 - ✓ Dumbbell specimens type 5A & 5B from jackets

 \checkmark 50 mm tubes from insulation (L0=10 mm)



Figure A.2 — Type 5A and 5B test specimens

	Specimen type	5A	5B
<i>l</i> 3	Overall length	≥75	≥35
b2	Width at ends	12,5 ± 1	6 ± 0,5
<i>l</i> ₁	Length of narrow parallel-sided portion	25 ± 1	12 ± 0,5
b1	Width at narrow portion	4 ± 0,1	2 ± 0,1
r1	Small radius	8 ± 0,5	3 ± 0,1
r2	Large radius	12,5 ± 1	3 ± 0,1
L	Initial distance between grips	50 ± 2	20 ± 2
Lo	Gauge length	20 ± 0,5	10 ± 0,2
h	Thickness	2 ± 0.2	1 ± 0,1

EDMS 2705496

OCCUPATIONAL HEALTH & SAFETY AND ENVIRONMENTAL PROTECTION UNIT

Choose an item.

Testing procedure for the tensile testing of polymeric components of the cables

Prepared by:	Checked by:	Approved by:
Artem Danyliuk	Berta Ruiz Palenzuela Federica Bortoletto Marija Kranjcevic	Jose Gascon
Click or tap here to enter text.	Distribution to	
Click of tap here to enter text.		

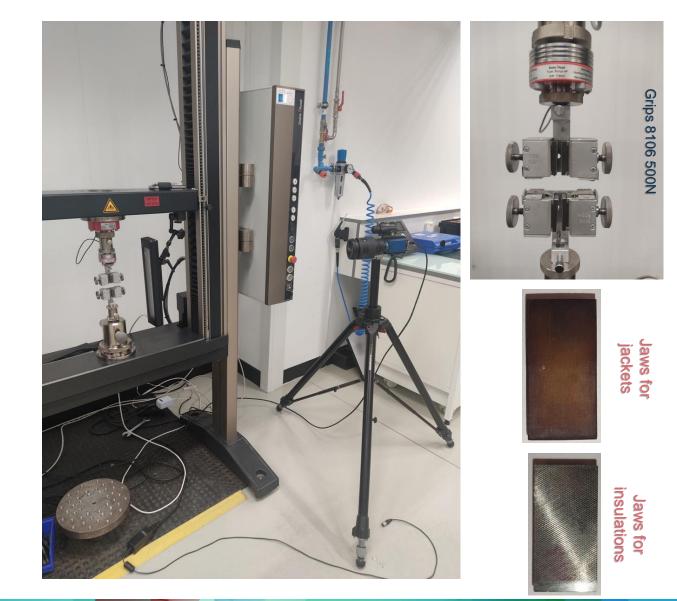
This document is uncontrolled when printed. Check the EDMS status to verify that this is the correct version

Status

Visibility : CERN Internal

1.0

See EDMS


□ Tensile Tests (TT)

• Equipment (MME lab)

- ✓ Machine Zwick/Roell Z010
- ✓ Grips 8106 500N
- ✓ 2 different jaws
- ✓ Limmes video-extensometer

• Tests

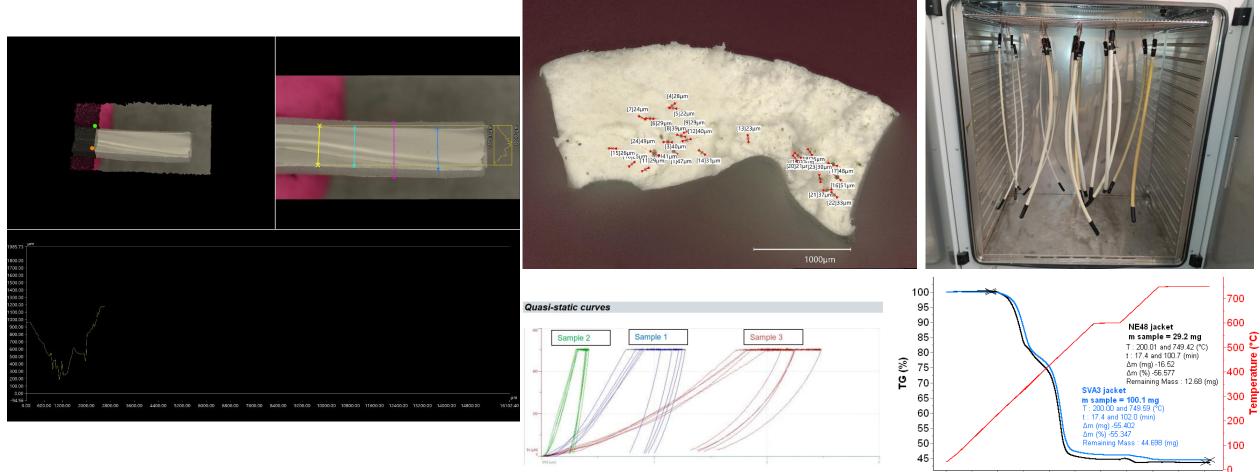


Illustration tests related

100

0

20

40

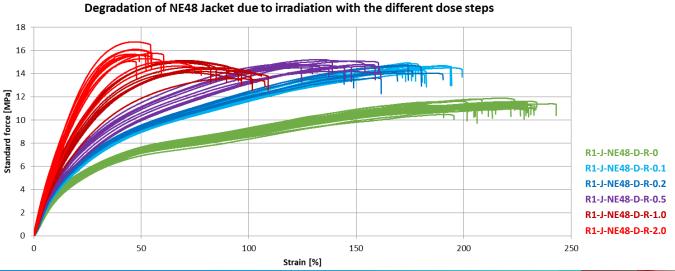
60

Time (min)

80

□ Testing methods & acceptance criteria EDMS 2447411

ageing Method		Source ageing method	Acceptance criteria	International standards			
				According to IEC 60502			
Reference Stage			 EaB ≥ 200% (jacket) EaB ≥ 300 % (insulation) Tensile strength ≥ 8MPa 	jacket LSZH • EaB ≥ 125% • Tensile strength ≥ 9MPa	 insulation XLPE • EaB ≥ 200% • Tensile strength ≥ 12MPa 		
Thermal Ageing Stage	Thermal ageing 42 days at 100°C	Temperature, time and oven requirements are taken from IEC 60811-408	 Residual EaB ≥ 70% OIT > 2 minutes 	According to IEC 60811-40 Applicable for wires, materia cracks to be obtained after th	ls to be rolled into coils, no		
Radiation Resistance Stage	Gamma Irradiation Dose <mark>500</mark> kGy (dose rate >1Gy/s)	Values from SSI-FS-2-1	 EaB ≥ 100 % (jacket) Residual EaB ≥ 50% (insulation) Residual Tensile strength ≥ 50% Jacket 	According to IEC 60544-2 • Residual EaB ≥ 50% • Residual Tensile strength ≥	50%		

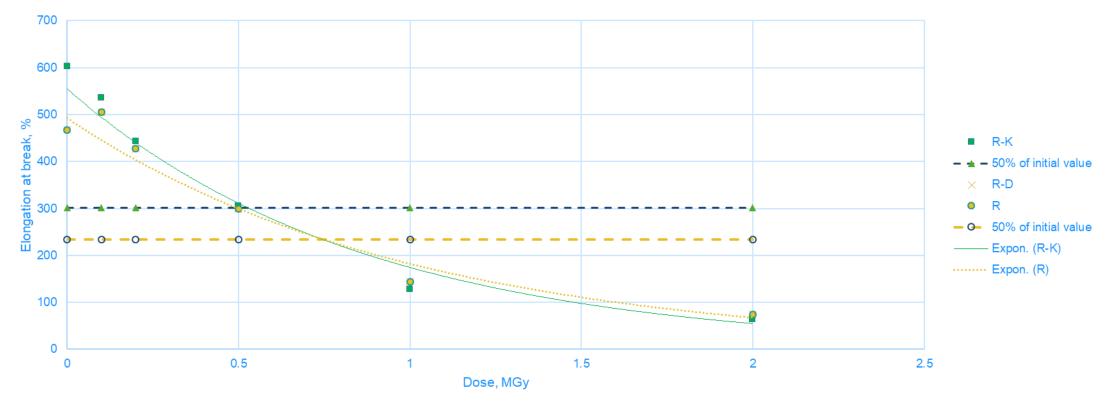


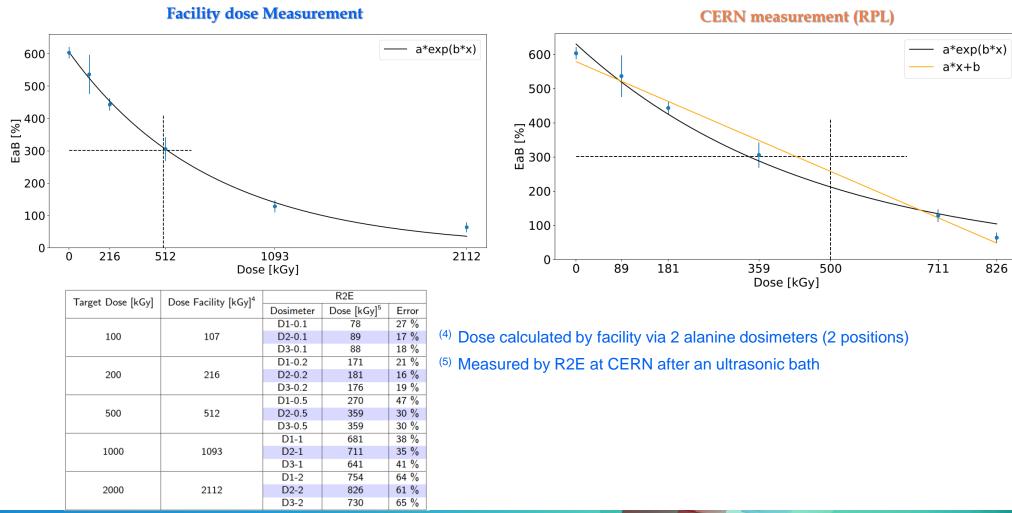
□ Tensile tests performed on 1st irradiation samples

Most used	
cable types (33%)	-
in HL-LHC Project	ų

	Cable		Number of tested specimens						
	Туре	Manufacturer		J	ackets	Insulation			
			Total	Valid	Share of valid $[\%]$	Total	Valid	Share of valid [%]	
33%)	NE8	NOVACAVI	275	184	67	22	15	68	
33%) roject	NE48	DRAKA	463	337	73	114	67	59	
	NE48	2M KABLO	492	408	83	341	225	66	
	CGN50	RFS	37	32	86	-	-	-	
	HCA78	RFS	36	33	92	-	-	-	
	PH3SJ	POLYCAB	41	38	93	112	65	58	

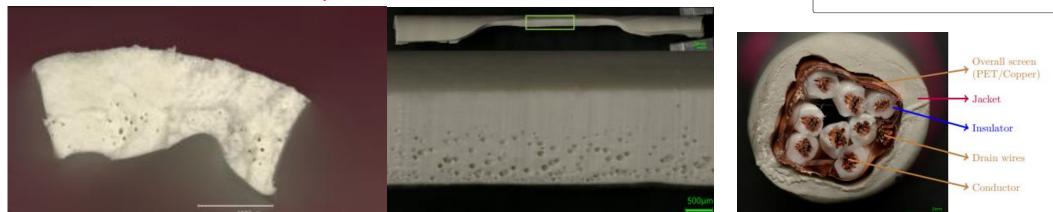
□ Results trend on cable degradation



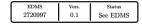

□ Results comparison per manufacturer

Comparison Tensile properties of the NE48 Insulation from Draka and 2M Kablo

□ Dosimetry issue on 1st irradiation campaign



□ Results applying acceptance criteria

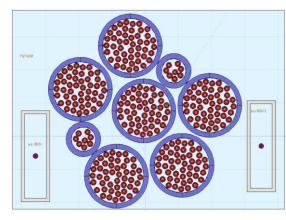

Cable	Cable component	500kGy Facility	500kGy CERN		
NE8 NV	jacket	do not pass*	do not pass		
NE48 DR	jacket	pass	pass		
NE48 DR	insulation	pass	do not pass		
NE48 2M	jacket	pass	pass		
NE48 2M	insulation	pass	pass		
PH3SJ Polycab	jacket	pass	n/a		
PH3SJ Polycab	insulation	do not pass	n/a		

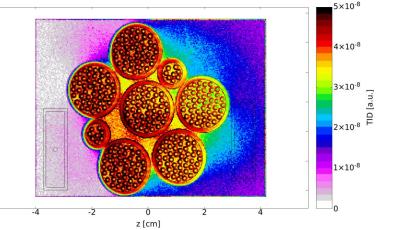
* Production defect discovered in the cable jacket

Visibility: SENSITIVE

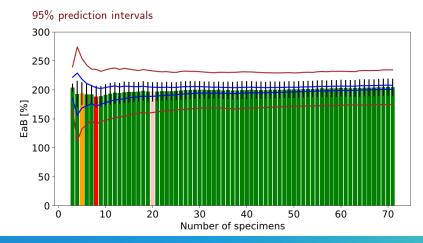
ENVIRON	IONAL HEALTH & SAH MENTAL PROTECTIO upational Health and Sa	ON UNIT						
	REPORT							
NOV	ACAVI defective cable b	atch						
ages of NE8 cable The study reveale	tensile test results and digit jacket supplied by NOVAC. d that the material is defect rements with regard to mech	AVI are reported. tive and does not						
Prepared by:	Checked by:	Approved by:						
F. Bortoletto (HSE-OHS)M. Kranjčević (HSE-OHS)B. Ruiz Palenzuela (HSE-OHS)	A. Danyliuk (HSE-OHS) S. Flateraaker (SCE-SSC) C. Garino (SCE-SSC) S. Sgobba (EN-MME)	J. Gascon (HSE-OHS)						
	Distribution to							
B. Delille, Y. Loertscher, S. Roesler – HSE management M. Capeans, C. Garino – SCE management K. Foraz, M. Nonis – EN management A. Unnervik, S. Guerri Dall'Oro – IPT-PI								

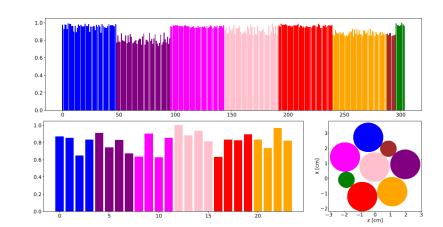
□ Calculations


• Working closely with R2E group on dosimetry & FLUKA for artificial irradiation


2

[1 × 0


-1


-2

• Math analysis: statistics, data correlation, models

Database fully operational in CERN environment

Created with the guidance of the HL-LHC quality control group

• Tracking CARE elements

- ✓ Cables and cable components (jacket & insulation)
- ✓ Cable bundles
- ✓ Dosimeters
- ✓ Raw Materials

EDMS Node

- ✓ Items & assets (cables, materials, etc.)
- ✓ Documents (specifications, test reports, etc.)
- ✓ Projects (campaigns, documentation, etc.)

• Infor, MTF, EAM Light

- ✓ Asset properties
- ✓ Steps

• EAM store representing the physical storage space

Labels with a QR code

a 📁 Campaigns

- 🔺 🥼 [A1] AD HORN CABLE assessment request
 - O HCPPCAC000-CR000006 AD HORN CABLE
 - O HCPPCAC000-CR000007 AD HORN CABLE
 - HCPPCACC000-CR000001 AD HORN CABLE Jacket
 - 2611977 (v.1) Tensile Test Report AD HORN CABLE Jacket Reference
 - C HCPPCACC000-CR000002 AD HORN CABLE Insulation
 - CONTRACTION CONTRACTION CABLE Jacket
 - CHCPPCACC000-CR000004 AD HORN CABLE Insulation
 - CHCPPCAC000-CR000008 AD HORN CABLE
 - CONTRACTOR CONTRACT
 - HCPPCACC000-CR000006 AD HORN CABLE Insulation
 - 2609505 (v.1) AD Horn cable assessment request
- [A2] CLP25 development
- [A3] Cable assessment MPPE
- IA4] Cable assessment PVC Cable East Area
- [C1] TK-NC-working-grp
- [P1] PIEP TT procedure harmonization
- ▲ ^(j) [R1] 20-08 Cable irradiation test to derive cable ageing
- Macrobundles
- 🕨 📁 Bundles
- 4 🃁 Cables
- 👂 📁 2M Kablo NE48
- 🕨 📁 Draka NE48
- Display="block-style="block-
- HCPPCAC003-RF000001 HCA78-50JFN Cable
 2593098 (v.1) RFS HCA78-50JFN TDS
- HCPPCAC005-PY000001 PH3SJ Cable
- HCPPCAC005-PY000002 PH3SJ Cable
- HCPPCAC004-RF000001 CGN50 Cable
 Cable Components
- 2599880 (v.1) Other ID for 20-08
- Image: Provide the image of the image of
- [S1] TT with more specimens
- 🕨 📁 [T1] TDC2 campaign

Main Made of Equipment data	Manufacturing Operation VI	Documents History Map					
Actions : Edit History							
External Links							
No external data link exists							
Property Values							
Property	Nominal Value	Value	Unit				
Campaign		20-08 Cable irradiation	n test				
Origin		BE-EA					
SCEM Code		N/A					
Drum Number CERN		N/A					
Drum Number Supplier		50671					
Production Date		2020/W07					
Color		Black					
Diameter [mm]		28					
Length [m]		1					

Equipment Identifier: HCPPCAC001-N4000100 Other Identifier: 00-NE8-N-drum

Description: NE8 Cable

Main	Made of	Equipment di	ata Manufacturing	Operation	Docur	nents 🔨	History	lap			
Actions	: Back to	list Edit	Repeat step								
	Generic D	ata									
Step			10	0	ther n	ame					
	ription		Traceability								
Stat			Done	R	esult			Ok			
	pleted or	1	2021-02-23								
	rided by					EAM	Light	2943			
Resp	onsible			E	xecut	ed by		ADAN	IYLIU		
Comm	ante										
John	ients										
Step [ocument	ts									
ED	EDMS DOCUMENTS 🔀 🔌 Η 🔗			X					Ξ I		^
				~						-	
_											
E,	ID		Title					Status			
· ·	2578312	v 1	CERN specific	action motri	×			🛑 In W	lork		
1	2370312	<u>v. 1</u>	CERN SPECING	auonmau	x			• III V	UIK		
>	2593189	v.1	Novacavi - NE	8 - Test Rei	oort			🛑 In W	/ork		
1 °								-			
				Per pa	qe	5 👻	1-2 of 2	<	<	>	>1
					Ŭ.						

Main Made of Equipment data Manufacturing Operation Documents History Map Actions : Add extra step

. or nerio	W Did	gram				
		N	o workflow diagram is defined for this equ	uipment		
Workflo	w Ste	ps			Last Re	peated
Step 🖬	R/E	Other name	Description	Status	Result	NC
5		0	Traceability	Done	Ok	
10		0	Ageing: irradiation in tunnels (*)	Cancelled	Cancelled	
20		0	Artificial ageing: irradiation (*)	Cancelled	Cancelled	
30		0	Artificial ageing: thermal ageing (*)	Cancelled	Cancelled	
40		0	Specimen preparation	Done	Ok	
50		0	Tensile test (TT) (*)	Done	Ok	
60		0	Oxidation induction time (OIT) test (*)	Cancelled	Cancelled	

Workflow Diagram

Conclusions

CARE roadmap

Deliverables *short term*

- ✓ Technical report on 1st irradiation campaign
- ✓ Tensile Tests & Technical reports on 2nd irradiation campaign
- ✓ Correlation and technical analyses from results obtained in both campaigns
- Technical report with cable requirements, tests methods and qualification acceptance criteria applicable for HL-LHC project (to be agreed)
- ✓ Prepare qualification campaign from HL-LHC selected manufacturers

Deliverables long term

- ✓ Prepare natural irradiation campaign in CERN facilities with similar doses as HL-LHC simulations
- ✓ Extract and test placed samples from RIAC in SPS (TS1+ & TDC2 tunnels)
- ✓ Research on the factor 5 used historically for artificial & natural irradiation
- ✓ Establish first lifetime models from all data & experience obtained from irradiation campaigns and qualification processes
- ✓ Prepare condition monitoring for HL-LHC operation

CARE Benefits

✓ Extending cable lifetime

- Reduction on cable consumption (material & procurement)
- Decreasing works required for removal & installation
- Lowering personnel stay in High Radiation Areas during works (Personnel Dose)
- Optimizing resources (material, manpower & duration) required in LS & TS schedules
- Reduction of radioactive waste (treatment of activated cables)
- ✓ Improvement in cable quality assurance
- ✓ Expertise on cable ageing testing techniques & ageing mechanisms
- ✓ Knowledge on polymers & additives behavior under radiation
- ✓ Experience on Qualification procedures
- ✓ Reference database for studied cables
 - TS, data sheet, tests records, FAT, SAT, control monitoring

CARE challenges

• Technical topics

- CPR cables (Cca-s2,d1,a2)
 - ✓ Higher amount of flame retardants and solids in polymers (ATH, [▶]
 - ✓ Polymers qualified for radiation environment (Yellow Book) m
 - ✓ CPR certified cables lower performance in terms of mec'

Artificial irradiation

- Improve monitoring radiation on bundles in ext
- ✓ Improve shipping conditions (shipment du
- Tensile Tests improvements
 - ✓ Pneumatic grips, hair pins techr.

xtensometer, etc

ung, time after radiation)

✓ Specimen insulation prepar

Scientific topics

- Develop other test[;]
 - ✓ Indentation
 - ✓ For cor
- Radiatir
 - ✓ Accu. Simeters for high radiation doses above 1MGy
 - ✓ Research on applied safety factor 5 among artificial vs natural radiation

ing, non destructible

Jes on cable ageing

Jarometry, FTIR, TGA,...

 \checkmark Natural and Artificial irradiation at CERN

s) impacting other cable properties

- e to pass CPR
- des and/or radiation resistance

Acknowledgement

CARE team

S. Sgobba & EN-MME lab team

M. Tabourelli & TE- VSC lab team

HSE ENV lab team,

R. Garcia & G. Lerner, Y. Aguiar (R2E),

M. Ferrari (R2M)

THANK YOU

FOR YOUR ATTENTION

