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=> The number!: the number of particles (protons) per bunch 
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=> How can all these particles be kept under control?
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=> 6  45 min 
(https://indico.cern.ch/event/1149120/)

×

https://indico.cern.ch/event/1149120/
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This was the background of my 1st slide…
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=> Electricity (and Magnetism),  
i.e. ElectroMagnetism (EM), is the (only) force  

which is used for particle accelerators! 
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Lorentz force

Transverse magnetic  
field in MAGNETS to guide 
and confine the particles 

Longitudinal electric  
field in RF CAVITIES to 

accelerate (or decelerate) 
the particles
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𝜆𝑤𝑙 =
𝑐
𝑓

𝐸 =
h 𝑐
𝜆𝑤𝑙

Electromagnetic spectrum
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Reminder: Fundamental physical constants

How can we  
express the speed of light 

 as a function of some 
parameters of this 

 table? 

c
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Reminder: Fundamental physical constants

The identification of  
light with an EM wave 
(with phase velocity 

related to the electric 
permittivity and magnetic 
permeability) was one of 
the great achievements 
of 19th century physics
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RF = Radio Frequency 
(from few kHz to hundreds 
of GHz) used for particle 

accelerators

Electromagnetic spectrum
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𝑓

𝐸 =
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(from few kHz to hundreds 
of GHz) used for particle 

accelerators

Electromagnetic spectrum
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𝑐
𝑓

𝐸 =
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=> For me it is 93.5 MHz 
(France Inter)

RF = Radio Frequency 
(from few kHz to hundreds 
of GHz) used for particle 

accelerators

Electromagnetic spectrum
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Relationship between the force on an 
object and the motion of this object?
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Classical mechanics

◆Do the Newtonian, Lagrangian and Hamiltonian mechanics 
describe the same physical mechanisms? 
✴Yes 
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◆ For particle accelerators, which one(s) of the following major 
sub-field of mechanics need to be included? 
✴Quantum mechanics mainly and sometimes special 

relativity 
✴Special relativity mainly and sometimes quantum 

mechanics 
✴Quantum mechanics, special relativity and general relativity

Classical mechanics
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- However, it is needed e.g. when radiations emitted by the 
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=> See for instance “Quantum 
aspects of beam physics” from 1999 
(https://accelconf.web.cern.ch/p99/
PAPERS/TUCR1.PDF) 

CLASSICAL mechanics: 
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2) Lagrangian and Hamiltonian mechanics (more “mathematical")
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 (from 

Newton’s second law of 
motion, including special  

relativity)

⃗F =
d ⃗p
dt
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Particle accelerators
◆ Particle accelerators are devices that handle the motion of 

particles by means of EM fields 

Example of some particle 
accelerators from CERN 
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Particle accelerators
◆ 3 conditions must be satisfied: which ones? 

✴Charged particles (e.g. p+ or e-) 
✴Stable particles (during the manipulation time) 
✴Sufficient vacuum 
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Case here of a “synchrotron”
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Particle accelerators

LHC proton beam in the injector chain

Linear accelerator 
(replaced now by LINAC4)

Circular accelerator 
(Synchrotron)

Transfer line

InjectionEjection

Duoplasmatron = Source => 90 keV (kinetic energy) 
LINAC2 = Linear accelerator => 50 MeV 
PSBooster = Proton Synchrotron Booster => 1.4 GeV 
PS = Proton Synchrotron => 25 GeV 
SPS = Super Proton Synchrotron => 450 GeV 
LHC = Large Hadron Collider => 7 TeV

1 keV = 103 eV
1 MeV = 106 eV
1 GeV = 109 eV
1 TeV = 1012 eV
1 PeV = 1015 eV

1 eV = 1.6  ×  10−19 J

                         22



E. Métral, 11-13/04/2022, CERN, 30/7-010

Particle accelerators

LHC proton beam in the injector chain

Linear accelerator 
(replaced now by LINAC4)

Circular accelerator 
(Synchrotron)

Transfer line

InjectionEjection

Duoplasmatron = Source => 90 keV (kinetic energy) 
LINAC2 = Linear accelerator => 50 MeV 
PSBooster = Proton Synchrotron Booster => 1.4 GeV 
PS = Proton Synchrotron => 25 GeV 
SPS = Super Proton Synchrotron => 450 GeV 
LHC = Large Hadron Collider => 7 TeV

1 keV = 103 eV
1 MeV = 106 eV
1 GeV = 109 eV
1 TeV = 1012 eV
1 PeV = 1015 eV

1 eV = 1.6  ×  10−19 J

Record collision  
energy reached in the 
LHC with Lead ions in 

2015 => See https://
home.cern/news/opinion/

physics/new-energy-frontier-
heavy-ions 

                         22

https://home.cern/news/opinion/physics/new-energy-frontier-heavy-ions
https://home.cern/news/opinion/physics/new-energy-frontier-heavy-ions
https://home.cern/news/opinion/physics/new-energy-frontier-heavy-ions
https://home.cern/news/opinion/physics/new-energy-frontier-heavy-ions


E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   H

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   

◆  is ? 
H

H

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   

◆  is equal to the total energy of the particle 
H

H

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   

◆  is equal to the total energy of the particle 
◆ Each degree of freedom, i.e. each dimension in space ( , , ) for a single 

particle, is described by a variable pair ( , ), ( , ) and ( , ) 

H
H

x y z
x px y py z pz

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   

◆  is equal to the total energy of the particle 
◆ Each degree of freedom, i.e. each dimension in space ( , , ) for a single 

particle, is described by a variable pair ( , ), ( , ) and ( , ) 
◆ The variables in each pair are called “canonical conjugate variables”

H
H

x y z
x px y py z pz

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
Hamiltonian ) to derive the dynamics of a particle   

◆  is equal to the total energy of the particle 
◆ Each degree of freedom, i.e. each dimension in space ( , , ) for a single 

particle, is described by a variable pair ( , ), ( , ) and ( , ) 
◆ The variables in each pair are called “canonical conjugate variables” 
◆ The equations of motion are given  by the Hamilton equations (e.g. in )

H
H

x y z
x px y py z pz

x

                         23



E. Métral, 11-13/04/2022, CERN, 30/7-010

Notion of phase space  
(instead of real space)

◆ Using the Hamiltonian formalism, we can use the constant of motion (the 
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◆  is equal to the total energy of the particle 
◆ Each degree of freedom, i.e. each dimension in space ( , , ) for a single 

particle, is described by a variable pair ( , ), ( , ) and ( , ) 
◆ The variables in each pair are called “canonical conjugate variables” 
◆ The equations of motion are given  by the Hamilton equations (e.g. in )

H
H

x y z
x px y py z pz

x

dx
dt

=
∂H
∂px

dpx

dt
= −

∂H
∂x
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◆ Let’s have a look to the simple case of a harmonic oscillator: H = ω
x2 + p2

x
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x2 + p2

x

2
dx
dt

=
∂H
∂px

dpx

dt
= −

∂H
∂x

=> 
dx
dt

= ωpx

=> 
dpx

dt
= − ωx

=> 
d2x
dt2

+ ω2x = 0

=>                             or x(t) ∝ cos(ωt) x(t) ∝ sin(ωt)
px(t) ∝ sin(ωt) px(t) ∝ cos(ωt)

◆ And similarly for the other directions  and  => The motion of a particle in 
the 3D real space is studied and described in a 6D phase space

y z

=> Circular motion in phase space
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Notion of phase space  
(instead of real space)

◆ Let’s have a look, for instance, to the motion of a bunch of particles, turn 
after turn, in the longitudinal phase space ( , ) => Using here some 
other normalised parameters proportional to  (for the horizontal axis) and  
(for the vertical axis)

z pz
z pz
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MATCHED BUNCH

Energy profile [a.u.]

Surface =  
Longitudinal EMITTANCE 

of the bunch  
= εL 

Separatrix
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Energy profile [a.u.]

Leads to an increase of the  
longitudinal emittance and/or 

particle losses 

MISMATCHED BUNCH
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Energy profile [a.u.]
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◆ Similarly, in the transverse (e.g. ) plane, 
linear and nonlinear motions can also be 
observed depending on the amplitude

x

normxʹ

normx
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Beam emittance

                         34



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance
◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y

                         34



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance
◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y

                         34



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance

                         34

◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance
◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y

                         34



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance
◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y

                         34



E. Métral, 11-13/04/2022, CERN, 30/7-010

Beam emittance
◆ Similarly, in the transverse planes (  or ), these definitions are usually usedx y

The β-function reflects the size of  
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◆With the Coulomb repulsion 

◆ The short muon lifetime (~ 2.2 s at rest) for a possible future 
muon collider
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Group (“bunch”) of 
particles (e.g.: p+)

Special relativity will help…

◆With the Coulomb repulsion 

◆ The short muon lifetime (~ 2.2 s at rest) for a possible future 
muon collider 

◆ Etc.

μ
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Special relativity

=> See MOOC (Massive Open Online Course) on Special 
Relativity (SR): http://mooc.particle-accelerators.eu/special-relativity/ 
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Special relativity

=> Let’s have a look to the first 2 minutes…: http://mooc.particle-accelerators.eu/special-relativity/ 
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Special relativity

◆ Length contraction L =
L′ 

γ
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Special relativity

◆ Length contraction 

◆ Time dilation

L =
L′ 

γ

t = γt′ 
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◆ A muon collider has been discussed for some time as the ultimate lepton 

collider (see https://muoncollider.web.cern.ch/)
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Special relativity
◆ A muon collider has been discussed for some time as the ultimate lepton 

collider (see https://muoncollider.web.cern.ch/)

𝜏 =  𝛾 𝜏0
~ 150 ms  
at 7 TeV
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Special relativity
◆ A muon collider has been discussed for some time as the ultimate lepton 

collider (see https://muoncollider.web.cern.ch/)

𝜏 =  𝛾 𝜏0
~ 150 ms  
at 7 TeV

=> Everything needs to be done swiftly!

                         45

https://muoncollider.web.cern.ch/


E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         46



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         46



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         46



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         46



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         46



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         47



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         48



E. Métral, 11-13/04/2022, CERN, 30/7-010

Special relativity

                         49



E. Métral, 11-13/04/2022, CERN, 30/7-010

EM: the ? Maxwell equations

Maxwell
     (1831-1879)
 

                         50



E. Métral, 11-13/04/2022, CERN, 30/7-010

Maxwell
     (1831-1879)
 

                         50

EM: the 4 Maxwell equations



E. Métral, 11-13/04/2022, CERN, 30/7-010

Maxwell
     (1831-1879)
 

=> See also MOOC on Electromagnetism: http://mooc.particle-
accelerators.eu/electromagnetism/  

EM: the 4 Maxwell equations
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Maxwell
     (1831-1879)
 

◆ 4 “coupled” equations, which combine 
the work of Gauss, Faraday, Lenz 
and Ampere 

◆ Apply to all electric and magnetic 
phenomena and descr ibe the 
behavior of the electric and magnetic 
fields, and electric charges and 
currents (the magnetic charge does 
not exist) => Framework for all 
calculations involving EM fields 

◆ Predicted EM waves 
◆ Led Einstein to discover special 

relativity (together with the “failed” 
Michelson-Morley experiment)

EM: the 4 Maxwell equations

                         52



E. Métral, 11-13/04/2022, CERN, 30/7-010

Maxwell
     (1831-1879)
 

◆ 4 “coupled” equations, which combine 
the work of Gauss, Faraday, Lenz 
and Ampere 

◆ Apply to all electric and magnetic 
phenomena and descr ibe the 
behavior of the electric and magnetic 
fields, and electric charges and 
currents (the magnetic charge does 
not exist) => Framework for all 
calculations involving EM fields 

◆ Predicted EM waves 
◆ Led Einstein to discover special 

relativity (together with the “failed” 
Michelson-Morley experiment)

EM: the 4 Maxwell equations

                         52



E. Métral, 11-13/04/2022, CERN, 30/7-010

Maxwell
     (1831-1879)
 

◆ 4 “coupled” equations, which combine 
the work of Gauss, Faraday, Lenz 
and Ampere 

◆ Apply to all electric and magnetic 
phenomena and descr ibe the 
behavior of the electric and magnetic 
fields, and electric charges and 
currents (the magnetic charge does 
not exist) => Framework for all 
calculations involving EM fields 

◆ Predicted EM waves 
◆ Led Einstein to discover special 

relativity (together with the “failed” 
Michelson-Morley experiment)

EM: the 4 Maxwell equations

                         52



E. Métral, 11-13/04/2022, CERN, 30/7-010

Maxwell
     (1831-1879)
 

◆ 4 “coupled” equations, which combine 
the work of Gauss, Faraday, Lenz 
and Ampere 

◆ Apply to all electric and magnetic 
phenomena and descr ibe the 
behavior of the electric and magnetic 
fields, and electric charges and 
currents (the magnetic charge does 
not exist) => Framework for all 
calculations involving EM fields 

◆ Predicted EM waves 
◆ Led Einstein to discover special 

relativity (together with the “failed” 
Michelson-Morley experiment)

EM: the 4 Maxwell equations

                         52



E. Métral, 11-13/04/2022, CERN, 30/7-010

EM: the 4 Maxwell equations

                         53



E. Métral, 11-13/04/2022, CERN, 30/7-010

EM: the 4 Maxwell equations

                         54



E. Métral, 11-13/04/2022, CERN, 30/7-010

◆ : electric charge [C] =>  for a proton 
◆ : electric charge density [C/m3] 
◆ I, : electric current [A], electric current density [A/m2] 

◆ : electric field [V/m] 
◆ : magnetic field [A/m] 

◆ : electric displacement [C/m2] 
◆ : magnetic induction or magnetic flux density [T] => But, beware: it is often 

called “magnetic field” 

𝑞 𝑞 = 𝑒
𝜌

→
𝐽

→
𝐸
→
𝐻
→
𝐷
→
𝐵

EM: the 4 Maxwell equations
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◆ Maxwell Eqs. (2) and (3) are independent of  and  => They 
are referred to as the “homogenous Maxwell equations” 

◆ Maxwell’s Eqs. (1) and (4) depend on  and  => They are 
referred to as the “inhomogenous Maxwell’s equations” 

◆  and  may be regarded as sources of EM fields 

𝜌
→
𝐽

𝜌
→
𝐽

𝜌
→
𝐽

EM: the 4 Maxwell equations
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◆ When  and  are specified, one can integrate Maxwell 
equations to find possible electric and magnetic fields in the 
system 

◆ The solution one finds by integration is not unique: for example, 
there are many possible field patterns that may exist in a cavity 
(or waveguide) of given geometry 

◆ Most realistic situations are sufficiently complicated that 
solutions to Maxwell’s equations cannot be obtained analytically 
=> A variety of computer codes exist to provide solutions 
numerically

𝜌
→
𝐽

EM: the 4 Maxwell equations
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◆ Important feature of Maxwell equations: for systems containing 
materials with constant permittivity and permeability (i.e. 
permittivity and permeability that are independent of the fields 
present), the equations are linear in the fields and sources => As 
a consequence, the principle of superposition applies 

▪ If  and  are solutions of Maxwell’s 

e q u a t i o n s w i t h g i v e n b o u n d a r y c o n d i t i o n s , t h e n 

 will also be solutions of Maxwell’s 

equations, with the same boundary conditions  

▪ An important and widely used analysis technique for EM 
systems, including RF cavities and waveguides, is to find a set 
of solutions to Maxwell’s equations from which more 
complete and complicated solutions may be constructed

(→
𝐸1 ,

→
𝐵1) (→

𝐸2 ,
→
𝐵2)

(→
𝐸1 +

→
𝐸2 ,

→
𝐵1 +

→
𝐵2)

EM: the 4 Maxwell equations
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◆ From Eq. (1)

= total charge 𝑞

=> Coulomb’s law:

EM: the 4 Maxwell equations
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◆ From Eq. (1)

= total charge 𝑞

=> Coulomb’s law:

◆ From Eq. (2)

=> Absence of  
magnetic monopoles 
(lines of magnetic flux 

always occur in 
closed loop) 
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◆ From Eq. (4)

=> In absence of 2nd term

EM: the 4 Maxwell equations
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◆ From Eq. (3)

Eqs. (3) and (4) tell us that 
a time dependent electric 
(magnetic) field will induce 
a magnetic (electric) field 
=> Fields in RF cavities 
and waveguides always 

consist of both electric and 
magnetic fields

◆ From Eq. (4)

=> In absence of 2nd term

EM: the 4 Maxwell equations
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◆ EM fields can be written as derivatives of scalar and vector 
potentials and  

◆ The knowledge of the potentials allows the computation of the 
fields

𝝓 (𝒙,  𝒚,  𝒔) 
→
𝑨 (𝒙,  𝒚,  𝒔) 

EM: the 4 Maxwell equations
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◆ While the absolute values of the electric and magnetic fields 
can be measured, the absolute values of the potentials are not 
defined. The EM potentials are merely auxiliary “constructions”, 
although very important ones, in particular, for the relativistic 
formulation of the EM theory 

◆ The scalar and vector potentials are used in particular if 
one uses the Hamiltonian formalism to describe the beam 
dynamics (which leads to the same results as the ones obtained 
using the Lorentz force and Newton’s second law of motion)  

EM: the 4 Maxwell equations
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Field matching
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Energy of EM waves

◆ Poynting vector:  

=> It points in the direction of propagation and describes the “energy flux”, 
i.e. the energy crossing a unit area per second 

◆ Remark on complex notations for vectors 
▪ As long as we deal with linear equations, we can carry out all the 

algebraic manipulations using complex field vectors, where it is 
implicit that the physical quantities are obtained by taking the 
real parts of the complex vectors 

▪ However, when using the complex notation, particular care is 
needed when taking the product of two complex vectors: to be safe, 
one should always take the real part before multiplying two complex 
quantities, the real parts of which represent physical quantities

→
𝑆 =

→
𝐸   ×  

→
𝐻
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Relativistic transformation  
of EM fields
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(RF) cavities & waveguides
◆ At the surface of an ideal (or perfect) conductor (i.e. with no 

energy dissipation), the normal component of  and the 
tangential component of  must both vanish => Standing 
waves that can persist within the cavity are determined by 
the shape of the cavity 

◆ Usually, the energy stored in an RF cavity is needed to 
manipulate a charged particle beam in a particular way  
▪ Accelerate the beam => Most of the time 
▪ Decelerate the beam => Used in some cases 
▪ Deflect the beam => e.g. Crab Cavities for future LHC 

◆ The effect on the beam is determined by the field pattern. 
Therefore, it is important to design the shape of the cavity, so 
that the fields in the cavity interact with the beam in the desired 
way; and that undesirable interactions (which always occur to 
some extent) are minimized

→
𝐵→

𝐸
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◆ Cavities are useful for storing energy in EM fields, but it is also 
necessary to transfer EM energy between different locations, 
e.g. from an RF power source such as a klystron, to an RF 
cavity 

◆ Waveguides are generally used for carrying large amounts of 
energy (high power RF) 

◆ For low power RF signals (e.g. for timing or control systems), 
transmission lines are generally used (over short distances) 

◆ Although the basic physics in waveguides and transmission 
lines is the same – both involve EM waves propagating through 
bounded regions – different formalisms are used for their 
analysis, depending on the geometry of the boundaries 

◆ As was the case for cavities, the patterns of the fields in the 
resonant modes are determined by the geometry of the 
boundary

(RF) cavities & waveguides
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Conclusions on EM & SR
◆ 2 main pre-requisites to understand in detail the accelerator physics 

and perform all the necessary computations  

▪ Electromagnetism 
▪ Special relativity 

◆ You will now use these concepts to make many computations 
▪ Transverse beam dynamics: motion of independent particles 

under the Lorentz force from a magnetic field  
▪ Longitudinal beam dynamics: motion of independent particles 

under the Lorentz force from an electric field  
▪ Space charge: EM interaction between the particles of a beam 
▪ Beam beam: EM interaction between the two beams of a collider 
▪ Instabilities: EM interaction between the particles and their 

environment (and/or another beam; electron cloud; ions; etc.) 
▪ Etc. => To correctly describe the dynamics of a beam of 

particles, all the wanted and unwanted EM interactions need 
to be taken into account! 
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under the Lorentz force from an electric field (lin. & nonlinear) 
▪ Space charge: EM interaction between the particles of a beam 
▪ Beam beam: EM interaction between the two beams of a collider 
▪ Instabilities: EM interaction between the particles and their 

environment (and/or another beam; electron cloud; ions; etc.) 
▪ Etc. => To correctly describe the dynamics of a beam of 

particles, all the wanted and unwanted EM interactions need 
to be taken into account! 

      
                         71

Conclusions on EM & SR



E. Métral, 11-13/04/2022, CERN, 30/7-010

◆ 2 main pre-requisites to understand in detail the accelerator physics 
and perform all the necessary computations  

▪ Electromagnetism 
▪ Special relativity 

◆ You will now use these concepts to make many computations 
▪ Transverse beam dynamics: motion of independent particles 

under the Lorentz force from a magnetic field (lin. & nonlinear) 
▪ Longitudinal beam dynamics: motion of independent particles 

under the Lorentz force from an electric field (lin. & nonlinear) 
▪ Space charge: EM interaction between the particles of a beam 
▪ Beam beam: EM interaction between the two beams of a collider 
▪ Instabilities: EM interaction between the particles and their 

environment (and/or another beam; electron cloud; ions; etc.) 
▪ Etc. => To correctly describe the dynamics of a beam of 

particles, all the wanted and unwanted EM interactions need 
to be taken into account! 

      
                         71

Conclusions on EM & SR



E. Métral, 11-13/04/2022, CERN, 30/7-010

◆ 2 main pre-requisites to understand in detail the accelerator physics 
and perform all the necessary computations  

▪ Electromagnetism 
▪ Special relativity 

◆ You will now use these concepts to make many computations 
▪ Transverse beam dynamics: motion of independent particles 

under the Lorentz force from a magnetic field (lin. & nonlinear) 
▪ Longitudinal beam dynamics: motion of independent particles 

under the Lorentz force from an electric field (lin. & nonlinear) 
▪ Space charge: EM interaction between the particles of a beam 
▪ Beam beam: EM interaction between the two beams of a collider 
▪ Instabilities: EM interaction between the particles and their 

environment (and/or another beam; electron cloud; ions; etc.) 
▪ Etc. => To correctly describe the dynamics of a beam of 

particles, all the wanted and unwanted EM interactions need 
to be taken into account! 

      
                         71

Conclusions on EM & SR



E. Métral, 11-13/04/2022, CERN, 30/7-010                          72

Conclusions on EM & SR



E. Métral, 11-13/04/2022, CERN, 30/7-010

◆ Example of a coherent instability due to the wake field in the CERN 
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◆ Example of a coherent instability due to the wake field in the CERN 
LHC

◆ Many kinds of instabilities exist and several mitigation measures are 
needed to push the performance of particle accelerators
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2 modes of particle  
accelerators: Fixed-target vs. Collider
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2 modes of particle  
accelerators: Fixed-target vs. Collider
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=> Figure of merit: BEAM POWER, to deliver a certain number of particles on target (p.o.t) / year

=> Figure of merit: LUMINOSITY (see after)
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Short intro to colliders  
(luminosity and pile-up)
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Why colliders? => Particle  
discoveries and precision measurements

Courtesy of P. Lebrun

Higgs boson in the CERN LHC (2012)
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Short history of colliders

Courtesy of P. Lebrun
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Hadrons vs. Leptons in circular colliders

hadron collider => frontier of physics 
–discovery machine 
–collisions of quarks  
–not all nucleon energy available in collision 
–huge background 

p p Limited by the dipole field available 
and the ring size   

Limited by energy lost from 
synchrotron radiation   

6 quarks

lepton collider => precision physics 
–study machine 
–elementary particles collisions 
–well defined CM energy 
–polarization possible

e+ e- 2 leptons

Go to higher magnetic fields                      
(=> Superconducting) or/and                      

large circumferences  
(=> ten’s km)

Ulost ∝
E4

ρE4
0

p[GeV/c] ≃ 0.3B[T]ρ[m]
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Go to linear colliders or heavier leptons
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Luminosity:  
figure of merit of a collider

Detector Nature Accelerator

The number of events  is the product of the cross-section of interest 
 and the time integral over the instantaneous luminosity 

Nexp
σexp L(t)

Nexp = σexp × ∫ L(t)dt
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Luminosity for the SIMPLEST case
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Luminosity for the SIMPLEST case

◆ Luminosity in the absence of crossing angle (and transverse 
beam offset and hourglass effect => See later)

Mfrev = fcollNumber of bunches
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Luminosity for the SIMPLEST case
◆With several assumptions  

✴1) Uncorrelated densities in all planes 
✴2) Gaussian distributions in all dimensions 
✴3) Same longitudinal dimension for both beams (rms beam 

size ) 
✴4) Same transverse dimensions for both beams (rms beam 

sizes  and ) 

✴5) No modifications during the bunch crossing 
  

the simplest formula for the peak luminosity is obtained 

σs

σx σy
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◆ Assuming now a round beam (  =  = ), but flat optics can 
also be used, and the same bunch intensities (  =  = ), this 
leads to  

σx σy σ
N1 N2 Nb

Luminosity for the SIMPLEST case
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Luminosity for the GENERAL case

◆ In the general case:  with  

✴Crossing angle 

L = L0 × F 0 ≤ F ≤ 1
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Luminosity for the GENERAL case

◆ In the general case:  with  

✴Transverse offset 

L = L0 × F 0 ≤ F ≤ 1

d1 − d2

σx
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Luminosity for the GENERAL case

◆ In the general case:  with  

✴Hourglass effect

L = L0 × F 0 ≤ F ≤ 1
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Luminosity for the GENERAL case

◆ The unit of the cross-section ( ) is the barn: σexp

◆ The inverse femtobarn ( ) is the unit typically used to measure 
the number of particle collision events per femtobarn of target cross-
section, and is the conventional unit for time-integrated luminosity

fb−1

◆ Thus if a detector has accumulated 100  of integrated luminosity, 
one expects to find 100 events per femtobarn of cross-section within 
these data

fb−1
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Pile-up

PU =
Lσexp

Mfrev
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Pile-up

PU =
Lσexp

Mfrev

PU = 19 from  
LHC Design Report 
(ATLAS and CMS)
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Summary: how to reach  
high luminosity in a collider?
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6 major challenges for future  
high-energy colliders?

1. Synchrotron radiation 

2. Bending magnetic fields 

3. Accelerating gradient 

4. Particle production ( , , ) 

5. Power consumption and sustainability 

6. Cost

e+ p̄ μ
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Many thanks for your attention 
and welcome to the fascinating 
world of particle accelerators!
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APPENDIX
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Standard Model
◆ After a century of discoveries and measurements, the particle 

physicists have developed the Standard Model, explaining 
almost all the components of matter and the forces between 
them

> 99.99% is 
empty space…
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Beam power for  
fixed-target experiments

                         A7

◆ The European Spallation Source (ESS) in Lund (Sweden) is a multi-
disciplinary research facility based on the world's brightest pulsed 
neutron source driven by the most powerful proton linac (5 MW)  

◆ ESS will start the scientific user programme in 2025 


