Introduction to activation physics

Christoph Schäfer (many thanks to the HSE RP team)

Contents

• Basics of activation physics

• Hands-on example

Basics of activation processes

What is activation?

Activation can be described as the imposed change of nuclear composition of given isotopes resulting in the production of radioactivity

At which particle accelerators can activation occur?

In principle at all high-energy accelerators. However, the radionuclide production rate is much higher at hadron or ion accelerators than those experienced at electron/positron accelerators.

Where does activation occur at accelerators?

At locations with (high) particle losses like:

- Target area
- Dump area
- Beam cleaning sections like collimators and scraper areas
- High-energy physics experiments

Activation processes

Which production mechanisms of activation occur at high-energy accelerators?

At high-energy accelerators primary particles interact with matter. The primary particle itself or secondary particles interacting with nuclei can produce radioactive isotopes. Main production channels of activation at high-energy accelerators are:

neutron 5

proton

• Spallation and other inelastic hadronic interactions ((n,n' γ), (n,2n), (n,p), (n, α) ...)

• Particle capture (mainly neutrons)

•(γ,n)-reactions (important for electron accelerators)

Isotope production

Activation depends on:

- chemical composition of target material
- incident particle type
- incident particle energy
- irradiation & cooling time

Creation of isotopes at an accelerator

decay-chains with branching

Operation: direct production + decay Cool-down: indirect production via decay

Buildup & decay of isotopes

Decay of a mono-isotopic source described via an ordinary differential equation:

N λ

А

$$A = \frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda \cdot N$$

 $\int_{N_0}^{N} \frac{\mathrm{d}N}{N} = \int_{0}^{t} -\lambda \cdot dt$

- ... Number of isotopes
- ... Decay constant of isotope
- N_0 ... Number of isotopes at t = 0
- $t_{1/2}$... Half life
 - ... Activity (Bq)
- N_0 ... Number of isotopes at t = 0

$$\lambda = \frac{\ln(2)}{t_{1/2}}$$

Buildup & decay of isotopes (simple case)

At an accelerator we also need to consider buildup \rightarrow we need to solve a differential equations, considering beside the decay also a production term *P*.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = P - \lambda \cdot N$$

Solution for this simple case:

$$N(t_{irr} + t_{cool}) = \frac{P}{\lambda}(1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

- the production rate P [nuclides/second] is constant
- decay chains are neglected

consider only one irradiation & one cooling period

11

Buildup & decay of isotopes considering decay chains and multiple irradiation+cooling cycles

At accelerators the production & decay described via **Bateman equations**:

$\frac{dN_1}{dt} = P_1 - \lambda_1 \cdot N_1$ $\frac{dN_2}{dt} = P_2 + (b_{1,2} \cdot \lambda_1 \cdot N_1) - \lambda_2 \cdot N_2$ \vdots $\frac{dN_i}{dt} = P_i + (b_{i-1,i} \cdot \lambda_{i-1} \cdot N_{i-1}) - \lambda_i \cdot N_i$ \vdots $\frac{dN_n}{dt} = P_n + (b_{n-1,n} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_n \cdot N_n$ build up	$\begin{array}{rcl} N_n & & Number of isotope n \\ P_n & & Production rate of isotope n \\ l_n & Decay constant of isotope n \\ b_n & & Branching ratio from isotope n-1 into n \\ k & & index of irradiation/cooling cycle \\ \hline Use \\ \hline Use \\ \hline Or FLUKA \\ \hline \end{array}$
build-up decay $N_n(t) = \sum_{k=1}^{m} \sum_{i=1}^{n} \left[\left(\prod_{j=i}^{n-1} b_{j,j+1} \right) \sum_{j=i}^{n} \left(\frac{N_i^k e^{-\lambda_j(t_{k,j})}}{\prod_{\substack{p=i \ p\neq j}}^{n} \lambda_{j,j+1}} \right) \right]$	To solve these problems Laplace transform + some algebra $\frac{irr^{+t_{k,cool}}}{p-\lambda_{j}} + \frac{P_{i}^{k}(1-e^{-\lambda_{j}t_{k,irr}})e^{-\lambda_{j}t_{k,cool}}}{\lambda_{j}\prod_{\substack{p=i\\p\neq j}}^{n}\left(\lambda_{p}-\lambda_{j}\right)}\right)$ $\Rightarrow \text{ decay operation } \Rightarrow \text{ build-up & decay}$

Example of residual activation @ CMS

Example of residual activation @ CMS

180 days of irradiation,

10⁹ pp/s, 1h of cooling

180 days of irradiation,
10⁹ pp/s, 1d of cooling

Example of residual activation @ CMS

180 days of irradiation, 10⁹ pp/s, **1w** of cooling

180 days of irradiation, 10⁹ pp/s, **1m** of cooling

2.7e-03 3.7e+02 1.0e+00 7.2e+00 5.2e+01 2.7e+03 1.0e+06 5.2e-02 3.7e-01 2.7e+00 1.9e+01 1.4e+02 1.0e+03 7.2e+03 5.2e+04 3.7e+05 1 0e-03 7.2e-03 uSv/h

Air activation

High-energy particles and neutrons are crossing the air which is surrounding beam impact points

Production of radioactive air.

Problems to be considered:

- People entering the area are exposed to and inhale the radioactive air
- Release of airborne radioactivity to the environment

Air activation example

Example: Beam loss on an unshielded object in the SPS tunnel (short term irradiation of air)

- Different main contributors to airborne radioactivity at different cooling times
- Long lived isotopes (e.g. Be-7) become important for confined spaces for longer irradiation and cooling times

Exercise

After which irradiation time (expressed in multiples of half-lives) do we reach 90% of the maximum saturation activity? (No cooling!)

Hints:

$$N(t_{irr} + t_{cool}) = \frac{P}{\lambda} (1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

$$N(t_{irr} + t_{cool}) = \frac{P}{\lambda} (1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

- We talk about irradiation only, hence t_{cool} is 0.
- Full saturation occurrs after infinite time.
- Hence the full saturation level is given with:

$$N(t_{irr} = \infty, t_{cool} = 0) = \frac{P}{\lambda}(1 - 0.0) \times 1.0 = \frac{P}{\lambda}$$

We are looking now for 90% of the saturation level

$$0.9 \times \frac{P}{\lambda} = \frac{P}{\lambda} (1 - e^{-\lambda t_{irr}}) \longrightarrow 0.9 = 1 - e^{-\lambda t_{irr}}$$
$$0.1 = e^{-\lambda t_{irr}} / \ln \longrightarrow -2.3 = -\lambda t_{irr}$$
$$2.3/\lambda = t_{irr} \quad \text{with } \lambda = \frac{\ln(2)}{t_{1/2}} \longrightarrow t_{irr} = 2.3/\ln(2) \times t_{1/2}$$
$$t_{irr} = 3.3 \times t_{1/2}$$

17

End of Part 1

Build-up and decay

Laplace transform of a function in the time domain f(t) into the Laplace domain F(s) for all real numbers $t \ge 0$

$$F(s) = \int_{0}^{\infty} e^{-s \cdot t} f(t) dt$$

We also make use of the following identities:

Linearity
$$a \cdot f(t) + b \cdot g(t) \rightarrow a F(s) + b G(s)$$

Differentiation $f'(t) \rightarrow sF(s) - f(0)$

Laplace transformation of system of differential equations

system of linear algebraic equations

Buildup & decay of isotopes

At accelerators the production & decay described via **Bateman equations**:

$$\frac{dN_{1}}{dt} = P_{1} - \lambda_{1} \cdot N_{1}$$

$$\frac{dN_{2}}{dt} = P_{2} + (b_{1,2} \cdot \lambda_{1} \cdot N_{1}) - \lambda_{2} \cdot N_{2}$$

$$\frac{dN_{i}}{dt} = P_{i} + (b_{1-1,i} \cdot \lambda_{i-1} \cdot N_{i-1}) - \lambda_{i} \cdot N_{i}$$

$$\frac{dN_{n}}{dt} = P_{i} + (b_{i-1,i} \cdot \lambda_{i-1} \cdot N_{i-1}) - \lambda_{i} \cdot N_{i}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$
build-up
$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n} - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,i} \cdot \lambda_{n-1} \cdot N_{n} - \lambda_{n} \cdot N_{n}$$

$$\frac{dN_{n}}$$

$$\frac{dN_{1}}{dt} = P_{1} - \lambda_{1} \cdot N_{1}$$

$$\frac{dN_{2}}{dt} = P_{2} + (b_{1,2} \cdot \lambda_{1} \cdot N_{1}) - \lambda_{2} \cdot N_{2}$$

$$\vdots$$

$$\frac{dN_{i}}{dt} = P_{i} + (b_{i-1,i} \cdot \lambda_{i-1} \cdot N_{i-1}) - \lambda_{i} \cdot N_{i}$$

$$\frac{dN_{n}}{dt} = P_{n} + (b_{n-1,n} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_{n} \cdot N_{n}$$

$$N_{n} \dots \text{ Number of isotope n}$$

$$P_{n} \dots \text{ Production rate of isotope n}$$

$$I_{n} \dots \text{ Decay constant of isotope n}$$

$$b_{n} \dots \text{ Branching ratio from isotope n-1 into n}$$

$$K \dots \text{ index of irradiation/cooling cycle}$$

Transform system of ODE into Laplace domain using the identities from the previous slide

$$F(s) = \int_{0}^{\infty} e^{-s \cdot t} f(t) dt$$

Other approaches:

- algebraic mapping via matrix exponential \rightarrow Eigenvalue problem
- \rightarrow numerically tricky because short-lived isotopes introduce arbitrarily large eigenvalues ²¹

Build-up and decay

Laplace transformed equations = system of linear equations, to be solved in the Laplace domain as a function of *s*.

$$s \cdot F_{1}(s) - N_{1}(t = 0) = \frac{P_{1}}{s} - \lambda_{1} \cdot F_{1}(s)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad N_{n} \dots \text{ number of isotope n}$$

$$P_{n} \dots \text{ production rate of isotope n}$$

$$\lambda_{n} \dots \text{ decay constant of isotope n}$$

$$\lambda_{n} \dots \text{ branching ratio from isotope n}$$

$$b_{n} \dots \text{ branching ratio from isotope n}$$

$$F_{n}(s) \dots \text{ Laplace transformed of n}$$

$$S \cdot F_{m}(s) - N_{m}(t = 0) = \frac{P_{m}}{s} + b_{m-1,m} \cdot \lambda_{m-1} \cdot F_{m-1}(s) - \lambda_{m} \cdot F_{m}(s)$$

Inverse Laplace transformation of $F_n(s)$ $\mathcal{L}^{-1}(F_n(s)) \longrightarrow N_n(t)$

$$N_n(t) = \sum_{i=1}^n \left[\left(\prod_{j=i}^{n-1} \lambda_j b_{j,j+1} \right) \sum_{j=i}^n \left(\frac{N_i^0 e^{-\lambda_j t}}{\prod_{\substack{p=i \ p\neq j}}^n \lambda_p - \lambda_j} + \frac{P_i (1 - e^{-\lambda_j t})}{\lambda_j \prod_{\substack{p=i \ p\neq j}}^n \lambda_p - \lambda_j} \right) \right]$$

To obtain the final result for a given isotope the contributions of the various chains have to be summed up.

C. Theis, H. Vincke, "Implementation of an activation build-up and decay engine in ActiWiz" EDMS 1312453 & 1363771

Reduction of radioactive waste

- Optimization already crucial during the design phase
- Beside other aspects also the radiological consequences of the implementation of a material have to be considered
- Level of activation depends on the type of the material

Safety benefit

• Lower dose rates and committed doses

Operational benefit

- Reduced downtime due to faster access
- Less restrictions for manipulation & access

End of life-cycle benefit

- Smaller amount and less critical radioactive waste
- Smaller financial burden

S. Myers initiated the project concerning the radiological classification of materials