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Part 4: Electron cloud –

Build up and effects on beam dynamics

• Electron cloud build up
• Electron production and multiplication

• Observation in accelerator rings

• Scrubbing and other techniques of mitigation/suppression

• E-cloud induced instabilities and incoherent effects 
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We will look into the description and the impact of electron cloud. We will
discuss the conditions for an electron cloud to build in the vacuum chamber of
an accelerator and mitigation/suppression techniques. We will also show
some examples linked to electron cloud effects such as beam induced
instability and incoherent effects.
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• Electron cloud build up
• Electron production and multiplication

• Observation in accelerator rings

• Techniques of mitigation/suppression

• E-cloud induced instabilities and incoherent effects 
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• We have learned about the concept of particles, macroparticles and particle
distributions as well as some peculiarities of multiparticle dynamics in accelerators.

• We have learned about the basic concept of wake fields and how these can be
characterized as a collective effect in that they depend on the particle distribution.

• We have learned the impact of these in the longitudinal and transverse planes.

• We are ready to look into a new, but popular ☺, source of collective effects, i.e. the
electron cloud
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Multi-bunch beam s

Interaction with the 
external environment

Equations of 
motion of the 
beam particles

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields 

06.05.2022 Collective effects - Giovanni Rumolo



HEP700Reminder

6

Interaction of the 
beam with the 

external environment

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields 

Pure EM interaction
– Maxwell’s equations

o The beam as the source term
o Boundary conditions given by the 

chamber in which the beam is 
propagating

o Generation of wake 
functions/impedances
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Interaction of the 
beam with the 

external environment

Additional electromagnetic field 
acting on the beam, besides RF 
and external magnetic fields 

The electron cloud
– Electron production and 

accumulation
– Poisson’s equation with

o The electron cloud as the source 
term

o Boundary conditions given by the 
chamber in which the electron 
cloud builds up
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Residual gas 
ionization

Photoelectrons from 
synchrotron radiation 

Desorption from the 
losses on the wall

beam
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Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)
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Residual gas 
ionization

Photoelectrons from 
synchrotron radiation 

• Gas ionization and wall desorption produce both electrons and ions (the former 
one with the same rate, the second one with different rates depending on the 
desorption yields), photoemission is only a source of electrons

• The dominant mechanism depends upon e.g.
o Beam type and parameters (e.g. lepton vs hadrons, beam energy)

o Vacuum level

o Design (material, shape), roughness, cleanness of the inner surface of chamber 

Desorption from the 
losses on the wall

Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)
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beam

e-
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Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)

• Acceleration of primary electrons in the beam field
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e-

e-

e-

q

Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)

• Acceleration of primary electrons in the beam field
• Secondary electron production when hitting the wall

Secondary Electron Yield (SEY)
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Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)

• Acceleration of primary electrons in the beam field
• Secondary electron production when hitting the wall

• Avalanche electron multiplication if SEY > 1
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Beam pipe transverse cut

Assume an initial distribution of electrons    
(from any of the mechanisms discussed before)
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Beam pipe transverse cut

“Pinch” of electrons when bunch is passing
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“Pinch” of electrons when bunch is passing

Beam pipe transverse cut
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“Pinch” of electrons when bunch is passing

Beam pipe transverse cut
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Few high energy (>100 eV) electrons reach the 
chamber wall already on the falling edge of the bunch 
and start producing secondaries

Beam pipe transverse cut
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High energy electrons (>100 eV) reaching the 
chamber wall produce more secondaries

Beam pipe transverse cut
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Beam pipe transverse cut

High energy electrons (>100 eV) reaching the 
chamber wall produce more secondaries
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Beam pipe transverse cut

High energy electrons (>100 eV) reaching the 
chamber wall produce more secondaries
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Beam pipe transverse cut

High energy electrons (>100 eV) reaching the 
chamber wall produce more secondaries
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As they are produced, the emitted secondaries
form a halo near the chamber wall because they 
have low energy (up to 10 eV) 

Beam pipe transverse cut
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Beam pipe transverse cut

As they are produced, the emitted secondaries
form a halo near the chamber wall because they 
have low energy (up to 10 eV) 
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Beam pipe transverse cut

As they are produced, the emitted secondaries
form a halo near the chamber wall because they 
have low energy (up to 10 eV) 
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Beam pipe transverse cut

While the halo gets more and more populated, 
the center is gradually depleted 
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Beam pipe transverse cut

While the halo gets more and more populated, 
the center is gradually depleted 
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Beam pipe transverse cut

While the halo gets more and more populated, 
the center is gradually depleted 
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Beam pipe transverse cut

The center is strongly depleted
No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
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Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls



HEP700Electron cloud formation cartoon

06.05.2022 Collective effects - Giovanni Rumolo 32

Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls
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Beam pipe transverse cut

No more secondaries are produced because there are 
no longer high energy electrons reaching the walls
Some low energy electrons are absorbed at the walls 
while the center gets repopulated
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Beam pipe transverse cut

But then the next bunch comes, there is a new pinch 
and the whole process starts all over
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Beam pipe transverse cut

And it all repeats until the next bunch comes
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• Electrons generated (DNeg) depend on bunch charge, 
chamber radius and surface SEY

• Electrons lost (DNel) depend on chamber radius and 
probability of reflection at low energy

• Balance between the two depends on bunch spacing

Beam pipe transverse cut

bunch spacing 

DNeg

DNel
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• Bunch after bunch, the e-cloud grows exponentially (if SEY above a 
certain threshold value)
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• Bunch after bunch, the e-cloud grows exponentially (if SEY above a 
certain threshold value)

• The exponential rise stops when the space charge of the electrons 
becomes significant → At this point electron generation and loss 
compensate each other
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• Bunch after bunch, the e-cloud grows exponentially (if SEY above a 
certain threshold value)

• The exponential rise stops when the space charge of the electrons 
becomes significant → At this point electron generation and loss 
compensate each other

• The electron cloud decays in the gaps between trains
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Part 4: Electron cloud –

Build up and effects on beam dynamics

• Electron cloud build up
• Electron production and multiplication

• Observation in accelerator rings

• Scrubbing and other techniques of mitigation/suppression

• E-cloud induced instabilities and incoherent effects 
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• We have learned that electrons are generated in the vacuum chamber of an
accelerator when the beam passes.

• We have learned that
• The number of electrons can grow because of secondary electron emission at the chamber walls

• The process at some point saturates because of the electron cloud space charge

• A significant electron density builds up in the machine while bunches are passing → electron
cloud

• Once the machine operates with electron cloud, what do we observe?
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The presence of an e-cloud inside an accelerator ring is revealed by 
several typical signatures

✓ Fast pressure rise, outgassing

✓ Additional heat load

✓ Baseline shift of the pick-up electrode signal

✓ Synchronous phase shift along the bunch train due to energy loss

e-

beam

e-

e-
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The presence of an e-cloud inside an accelerator ring is revealed by 
several typical signatures

✓ Fast pressure rise, outgassing

✓ Additional heat load

✓ Baseline shift of the pick-up electrode signal

✓ Synchronous phase shift along the bunch train due to energy loss

✓ Tune shift along the bunch train

✓ Coherent instability
o Single bunch effect affecting the last bunches of a train

o Coupled bunch effect

✓ Poor beam lifetime and emittance growth

Machine 
observables

beam
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The presence of an e-cloud inside an accelerator ring is revealed by 
several typical signatures

✓ Fast pressure rise, outgassing

✓ Additional heat load

✓ Baseline shift of the pick-up electrode signal

✓ Synchronous phase shift along the bunch train due to energy loss

✓ Tune shift along the bunch train

✓ Coherent instability
o Single bunch effect affecting the last bunches of a train

o Coupled bunch effect

✓ Poor beam lifetime and emittance growth

✓ Active monitoring: signal on dedicated electron detectors  (e.g. 
strip monitors) and retarding field analysers

Beam 
observables

Machine 
observables
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• Early LHC operation
• Routine operation with 150 ns beams started in Summer 2010 

• Electron cloud made its first appearance as a pressure rise in the common 
chamber in presence of both beams, i.e. for effectively lower bunch spacings
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• Early LHC operation
• Routine operation with 150 ns beams started in Summer 2010 

• Electron cloud made its first appearance as a pressure rise in the common 
chamber in presence of both beams, i.e. for effectively lower bunch spacings

Beam 1 Beam 2

DP1

DP2

150 ns - 450 GeV
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⇒ Heat load on the LHC beam screen of the cold arcs
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 e
-
 cloud signal 

LHC beam signal 

 e- cloud signal 

LHC beam signal  

 e
-
 cloud signal  

LHC beam signal  

 e
-
 cloud signal 

LHC beam signal  

• The electron cloud signal first appeared in the SPS on the signal from a pick up 
as a shift of the baseline (depending on the charge collected by the electrodes)

• Correlation with train structure, length, gap were immediately apparent.

SPS 2001
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⇒ Bunch-by-bunch phase shift reveals the shape of the e-cloud build up 

⇒ Larger electron cloud at 4 TeV is due to photoelectrons

11 trains of 72b in LHC (25 ns spacing)
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• Horizontal and vertical tune shifts along a 46 bunch train in Cesr-TA (Cornell 
facility used for electron cloud studies) taken during a positron run

• Higher currents lead to stronger electron cloud.
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• Electron cloud build up
• Electron production and multiplication
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• We have learned that electron clouds can build up in the vacuum chamber of an
accelerator operating in a certain range of beam parameters.

• Electron clouds are associated to many detrimental effects, like pressure rise,
additional heat load, tune and stable phase shift, beam degradation through
instability and emittance growth

• How can we avoid or cure it?
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• Fortunately, the SEY of a surface is not a fixed property but it becomes 
lower under electron bombardment (scrubbing)

• Laboratory measurements show that
o SEY decreases quickly at the beginning of the process, then slows down

o Electrons with different energies have different ‘scrubbing efficiency’

o The ‘final’ value of SEY depends on material, e- energy, temperature, vacuum 
composition, more?
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• Beam-induced scrubbing
o Has been measured directly at the SPS with a Stainless Steel rotatable 

sample exposed to the beam or to SEY measurement device (2004)
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• Beam-induced scrubbing
o Has been measured directly at the SPS with a Stainless Steel rotatable 

sample exposed to the beam or to SEY measurement device (2004)

o Is revealed by improving accelerator conditions over time, e.g. 
decrease of pressure rise, heat load, stable phase shift, general 
improvement of beam quality (lower losses, less emittance growth)

Example: Reduction of losses in LHC over 9 days of scrubbing 
(no clear reduction visible in first phase due to increasing length of the injected trains)
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• Beam-induced scrubbing
o Has been measured directly at the SPS with a Stainless Steel rotatable 

sample exposed to the beam or to SEY measurement device (2004)

o Is revealed by improving accelerator conditions over time, e.g. 
decrease of pressure rise, heat load, stable phase shift, general 
improvement of beam quality (lower losses, less emittance growth)

⇒ Many accelerators rely nowadays on beam induced scrubbing to 
reach their desired performance!
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Possible Solutions

Clearing electrodes installed 
along the vacuum chambers (only 
local, may cause impedance, 
aperture restriction)

Applying on the wall thin films with 
intrinsically low SEY 
• NEG coating (helps vacuum)
• C coating (no activation)

Solenoids (only applicable in field-
free regions without equipment)

Tolerate e-cloud, if possible, but 
damp the instability: feedback 
system

Machine scrubbing during 
operation
• Operation with degraded 

beam for some time
• Limited by reachable SEY, 

may be insufficient

Surface treatment to inhibit 
secondary electrons
• Grooves
• Roughness
• Sponges
• Laser ablation
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• We have learned that electron clouds can build up in the vacuum chamber of an
accelerator operating in a certain range of beam parameters.

• They are the origin of many detrimental effects, like pressure rise, additional heat
load, beam degradation through instability and emittance growth.

• They can be self-healing through beam induced scrubbing or they can be avoided by
design (surface coating/treatment, solenoids, clearing electrodes).

• What is the mechanism through which an electron cloud degrades the beam?
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• Our first ‘real’ collective interaction from 
impedances
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HEP700Accelerator beam system – electron clouds

• Two stream collective interaction –
much more complicated
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HEP700Electron clouds in a drift section

• Two stream collective interaction –
much more complicated

• Beam passage leads to a pinch of the 
cloud which in turn acts back on the 
beam – differently each turn

06.05.2022 Collective effects - Giovanni Rumolo 60



HEP700Electron clouds in a bending magnet

• Two stream collective interaction –
much more complicated

• Beam passage leads to a pinch of the 
cloud which in turn acts back on the 
beam – differently each turn
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HEP700Electron clouds in a quadrupole magnet

• Two stream collective interaction –
much more complicated

• Beam passage leads to a pinch of the 
cloud which in turn acts back on the 
beam – differently each turn
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HEP700Accelerator beam system – e-cloud

• Basic loop of tracking with electron 
clouds:
• Transport beam along segment to 

interaction point
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HEP700Accelerator beam system – e-cloud

• Basic loop of tracking with electron 
clouds:
• Transport beam along segment to 

interaction point

• Apply e-cloud kick
→ get fields from PIC step
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Particles in/fields from slice i
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• PIC stands for Particle-In-Cell

• We use this method to compute fields 
generated by particles to solve e.g. 
the Poisson equation

• Electron motion occurs at the time 
scale of a slice of a bunch length →
track single slices through the e-cloud 
and apply integrated kicks
• Compute electric fields from one slice 

and from e-cloud

• Apply kicks to protons and electrons

• Push electrons by one slice length

• Track next slice through e-cloud

E-cloud beam system

Collective effects - Giovanni Rumolo 6606.05.2022
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• PIC stands for Particle-In-Cell

• We use this method to compute fields 
generated by particles to solve e.g. 
the Poisson equation

• Electron motion occurs at the time 
scale of a slice of a bunch length →
track single slices through the e-cloud 
and apply integrated kicks
• Compute electric fields from one slice 

and from e-cloud

• Apply kicks to protons and electrons

• Push electrons by one slice length

• Track next slice through e-cloud

E-cloud beam system
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Slice index

E-cloud at slice index

n-1 i 1
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• PIC stands for Particle-In-Cell

• We use this method to compute fields 
generated by particles to solve e.g. 
the Poisson equation

• Electron motion occurs at the time 
scale of a slice of a bunch length →
track single slices through the e-cloud 
and apply integrated kicks
• Compute electric fields from one slice 

and from e-cloud

• Apply kicks to protons and electrons

• Push electrons by one slice length

• Track next slice through e-cloud

E-cloud beam system
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Slice index

E-cloud at slice index

n-1 i 1

06.05.2022
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Multi-bunch beam
s

Primary and 
secondary electron 
production, chamber 
properties E-cloud build up

x

y

Equations of 
motion of the 
beam particles

Noise
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Multi-bunch beam
s

Primary and 
secondary electron 
production, chamber 
properties E-cloud build up

x

y

Equations of 
motion of the 
beam particles

Noise

Instability problem Build-up problem



HEP700Electron cloud induced instabilities

• Coherent instabilities occur when a certain central cloud
density threshold is breached

• This leads to coherent intra bunch motion which grows
exponentially

• A consequence is emittance blow-up and losses
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• Typical e-cloud simulation try to identify the e-cloud central density threshold for an instability

• Scans in the central density are performed until an exponential growth can be observed in the
emittance
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• First injection of 48 bunches of 25 ns beam into the LHC in 2011

• Beam was dumped twice due to a violent instability in the vertical plane, 
causing losses above the interlock threshold
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Some motion only 
for last bunches …

up to ±5mm

~ bunch 25 is the first 
unstable 
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48x HEADTAIL simulations 
reveal the onset of instability

Ex. of coherent e-cloud effects in the LHC
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Some motion only 
for last bunches …

up to ±5mm

~ bunch 25 is the first unstable 

48b injection test (26/08/11) Headtail silation 1Headtail 148x PyECLOUD e- distribution (dmax=2.1)

bunch 48
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• We have learned that electron clouds can build up in the vacuum chamber of an
accelerator operating in a certain range of beam parameters.

• We have seen some of the detrimental effects of electron clouds on the machine.

• We have seen methods on how to suppress or mitigate the build up of electron
clouds.

• We have seen how we can conceptually model the beam-electron cloud interaction
and some examples of electron cloud induced instabilities.
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The End
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• In many of our codes, Particle in Cell (PIC) algorithms are used to compute the 
electric field generated by a set of charged particles in a set of discrete points (can be 
the locations of the particles themselves, or of another set of particles)

• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

06.05.2022 Collective effects - Giovanni Rumolo 79



HEP700PIC solvers in brief

• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

Internal nodes

External nodes 
(optional)

Uniform square grid
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HEP700PIC solvers – basic steps

• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs
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HEP700PIC solvers – basic steps

• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs

Boundary conditions (e.g., perfectly 

conducting, open,  periodic)

• Different numerical approaches exist to solve 
these types of equations each with its own 
advantages and drawbacks:

• Open space FFT solver (explicit, very fast but 
open boundaries) 

• Rectangular boundary FFT solver (explicit, very 
fast but only rectangular boundaries) 

• Finite Difference implicit Poisson solver (arbitrary 
chamber shape, sparse matrix, possibility to use 
Shortley Weller boundary refinement, KLU fast 
routines, computationally more demanding)

• Dual or multi-grid in combination with direct or 
iterative solvers
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• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)
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4. Field gather from grid to MPs
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• The solution typically consists of 4 stages:

1. Charge scatter from macroparticles (MPs) to grid (reduction of macroparticles)

2. Calculation of the electrostatic potential at the nodes

3. Calculation of the electric field at the nodes (gradient evaluation)

4. Field gather from grid to MPs
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HEP700Numerical model of electron cloud effects

• A self-consistent treatment requires the combination of an instability and a build-up code

• Becomes easily possible with modular structure and good design of codes (e.g. object 
orientation)

Legend: From instability code – From build-up code – Interaction between the two codes

• Transverse tracking 
→ with Q’, octupoles
etc.

• Longitudinal tracking

• Transverse feedback

• Impedances

• Space charge

• …

Instability code

• Transverse tracking 
→ with Q’, octupoles
etc.

• Longitudinal tracking

• Transverse feedback

• Impedances

• Space charge

• …
v

Beam Slicer

For each slice

Beam

Build-up code

Evaluate beam slice electric 
field (Particle in Cell) 

Generate seed e-

Compute e- motion  (t->t+Δt)
(possibly with substeps)

Detect impacts and generate 
secondaries

Evaluate the e- electric field 
(Particle in Cell)

Apply kick on the beam 
particles

Initial e- distribution
(from build-up sim.)

Instability code
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HEP700Ex. of incoherent e-cloud effects in the LHC

• Remember tune footprint from octupoles in Part I
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HEP700Ex. of incoherent e-cloud effects in the LHC

• Macroparticle
simulations 
allow to 
obtain tune 
footprints 
from all 
effects 
separated
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Octupole knob at -1.5
Q’=0/0, no e-cloud

Octupole knob at -1.5
Q’=15/20, no e-cloud

Octupole knob at 0

Q’=0/0, 5 x 1011 e/m3

Resonance line



HEP700Ex. of incoherent e-cloud effects in the LHC
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Octupole knob at -1.5
Q’=0/0, no e-cloud

Octupole knob at -1.5
Q’=15/20, no e-cloud

Octupole knob at 0

Q’=0/0, 5 x 1011 e/m3

Octupole knob at -1.5

Q’=15/20, 5 x 1011 e/m3

• Macroparticle
simulations 
allow to 
obtain tune 
footprint 
from all 
effects 
separated

• … as well as 
from all 
effects 
combined

Resonance line



HEP700Ex. of incoherent e-cloud effects in the LHC
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Octupole knob at -1.5
Q’=0/0, no e-cloud

Octupole knob at -1.5
Q’=15/20, no e-cloud

Octupole knob at 0

Q’=0/0, 5 x 1011 e/m3

Octupole knob at -1.5

Q’=15/20, 5 x 1011 e/m3

• Macroparticle
simulations 
allow to 
obtain tune 
footprint 
from all 
effects 
separated

• … as well as 
from all 
effects 
combined

• … to identify 
the source of 
incoherent 
losses in the 
LHC

Resonance line

Q’v=10

Qv=.305

Q’v=15

Qv=.300

Q’v=15

Qv=.305



HEP700

Backup - wakefields
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HEP700Electron production

06.05.2022 Collective effects - Giovanni Rumolo 91

Generation of charged particles inside the 
vacuum chamber 

(primary, or seed, electrons)

• Acceleration of primary electrons in the beam field
• Secondary electron production when hitting the wall

• Avalanche electron multiplication if SEY > 1

After the passage of several bunches, the electron distribution 
inside the chamber reaches a dynamic  steady state (electron cloud)



HEP700Surface scrubbing
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• If an accelerator can be run in e-cloud regime, scrubbing is expected 
to naturally occur (beam induced scrubbing)
o Fortunately beam dynamics knobs exist to preserve beam stability, 

although lifetime might be poor in presence of significant e-cloud

o Dedicated scrubbing runs can be used to lower the SEY
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HEP700Examples: solenoids (I)
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• Beneficial effect of the solenoids measured at the heavy ion collider RHIC (BNL)

• By changing the intensity of the magnetic field, the electron cloud was seen to be 
efficiently suppressed in a region equipped with an electron detector.



HEP700Examples: solenoids (II)
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• Beneficial effect of solenoids measured at the LER of KEKB

• Drastic reduction of the beam size blow up as well as the tune shift along the batch 



HEP700Examples: grooves
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• To reduce the effective SEY, the inner surface of the beam pipe can be grooved, so 
that emitted electrons remain trapped

• Figure shows the effective SEY as a function of the groove angle and period, for a 
sample having dmax=1.74 at Emax=330 eV



HEP700Examples: carbon coating
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• To reduce the effective SEY, the inner surface of the beam pipe can be coated with 
amorphous carbon (a-C)

• It is possible to reach values of dmax below 1, measured in the laboratory and also 
verified by measurements at an electron cloud detector in the SPS 



HEP700Signpost

Part 4: Electron cloud –

Build up and effects on beam dynamics

• Electron cloud build up
• Electron production and multiplication

• Observation in accelerator rings

• Scrubbing and other techniques of mitigation/suppression

• E-cloud induced instabilities and incoherent effects 

06.05.2022 Collective effects - Giovanni Rumolo 97

• We have learned that electron clouds can build up in the vacuum chamber of an
accelerator operating in a certain range of beam parameters.

• They are the origin of many detrimental effects, like pressure rise, additional heat
load, beam degradation through instability and emittance growth

• They can be self-healing through beam induced scrubbing or they can be avoided by
design (surface coating/treatment, solenoids, clearing electrodes)

• What is the mechanism through which an electron cloud degrades the beam?


