

European Roadmaps for Accelerator - R&D

Mike Lamont

Acknowledgements: Dave Newbold, Lucio Rossi,

UPHUK -8 5th September 2022 **Acknowledgements: Dave Newbold, Lucio Rossi**, Bernhard Auchmann

European Strategy for Particle Physics update 2020

… an **electron-positron Higgs factory is the highest-priority next collider** for the field, followed by a **hadron collider at the energy frontier** in the longer term

should investigate the technical and financial feasibility of a **future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.**

The timely realisation of the **electron-positron International Linear Collider (ILC)** in Japan would be compatible with this strategy

Two possible energy-frontier colliders have been studied for implementation at CERN, namely **CLIC and FCC**...

In addition to the high field magnets the **accelerator R&D roadmap** could contain: **an international design study for a muon collider, as it represents a unique opportunity to achieve a multi-TeV energy domain** beyond the reach of e+e- colliders, and potentially within a more compact circular tunnel than for a hadron collider.

Future Collider options

Higgs factory

- Plan A1: FCC-ee
- Plan A2: ILC
- Plan B: CLIC
- Plan C: CepC, C³

Multi-TeV

- \cdot e+e-: CLIC, C^3
- muons: Muon Collider
- protons: FCC-hh, SppC

2020 Update of the European Strategy for Particle Physics

- *"The technologies under consideration include high-field magnets, high-temperature superconductors*, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs. The European particle physics community must intensify accelerator R&D and sustain it with adequate resources.
- *A roadmap should prioritise the technology,* taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. *Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes."*

http://cds.cern.ch/record/2721370

Future Facilities Timeline

'Chicken-and-egg' problem

- ‣ Need the approximate dates of future facilities to define an R&D timeline
- ‣ Cannot predict dates of future facilities without knowing R&D needs
- ‣ Detector / accelerator roadmaps have used a common timeline
- ‣ Highly approximate, and not to be used out of context
- ‣ Dates represent the 'earliest feasible date', driven by both technical considerations and approval processes
- ‣ The goal on both sides is that R&D shall not be the rate-limiting step

CERN's scientific priorities

Following the ESPP update

successful completion of the high-luminosity upgrade of the LHC machine and experiments, with a view to the full exploitation of the LHC physics potential;

increased R&D efforts on advanced accelerator technologies, including high-field superconducting magnets, high-gradient accelerating structures, plasma wakefield acceleration, muon colliders, etc.;

investigation of the technical and financial feasibility of a future hadron collider at CERN, with a centre-of-mass energy of at least 100 TeV, and with an electron-positron Higgs and electroweak factory as a possible first stage;

support to long-baseline neutrino experiments in Japan and the United States; and support to a diverse, high-impact scientific programme complementary to high-energy colliders.

HFM R&D Goals

- **1. Demonstrate Nb3Sn magnet technology for large scale deployment, pushing it to its limits in terms of maximum field and production scale.**
	- a. The effort to quantify and demonstrate $Nb₃Sn$ ultimate field comprises the development of conductor and magnet technology towards the ultimate $Nb₃Sn$ performance.
	- b. Develop $Nb₃$ Sn magnet technology for collider-scale production, through robust design, industrial manufacturing and cost reduction.
- **2. Demonstrate the suitability of HTS for accelerator magnets,** providing a proof-of-principle of HTS magnet technology beyond the reach of $Nb₃Sn$.

HFM strategy

R&D Focus Areas and Cross-Cutting Activities

"The R&D programme must be holistic in nature: a compatible selection of electromagnetic, mechanical and thermal design approaches, conductors, materials, and manufacturing processes and methods needs to be integrated seamlessly with instrumentation and protection into a specific magnet solution responding to the required specification." • **Conversely, work across R&D areas must be closely coordinated.**

HFM - Overall vision

In practice… implementation of HFM Roadmap

FCC-hh high field dipole R&D: world effort

¹⁴ New Acc. Technology - Lucio Rossi @ ICHEP2022 - Bologna

2 weeks ago at CERN

RMM

Racetrack Model Magnet 16 T in a 50 mm cavity

- Demonstrate field on the aperture
- Mechanics (including inner coil support)

The RMM1b quench training at a higher value than for RMM1a, but after 5 quenches reached about the same level.

3 powering ramps were done, all reaching the present target of 11.81 kA (16.5 T conductor peak field)

Part 1 of the test program is now completed

The quench signatures seem rather similar to that of RMM1a except that the mechanical vibrations on the rods disappeared.

RF

Huge amount going on out there both SRF and RT

Strongly application driven (ILC, CLIC, FCC-ee, LCLS-II, PIP2, ESS, ERL…)

Aim is to help exploit synergies, focus attention etc. and report up…

SRF Technology: vast experience, diffuse know-how

Recent trends

- Nitrogen doping of Nb cavities at 800 °C (e.g. Grassellino, FNAL)
- **Effective magnetic flux expulsion by fast/high thermal gradient**
- Cooldown to achieve record low residual resistances
- **Coating of Nb with a thin layer of Nb₃Sn (allows operation at larger T, improved** cryogenic efficiency, e.g. Posen, Cornell)
- Use of large grain Nb (e.g. JLAB)
- Coating of Cu cavities with Nb by HiPIMS (High Power Impulse Magnetron Sputtering, e.g. Calatroni, CERN)
- **E** High-efficiency klystron
- **Solid state amplifiers**
- Design optimization, fabrication and operation of high power couplers of CW operation (e.g. Montesinos, CERN)

Bulk Nb

Thin film

coating

on copper

E.g. SRF at CERN

Well defined, not discussed here

Projects & operation

Operation:

LHC, HIE-ISOLDE, SPS crab cavity test stand, SRF infrastructure

Projects:

HL-LHC (until 2027) LHC dressed spares (until 2022) requested: 5th HIE-ISOLDE CM requested: SRF building

Funding: *infrastructure operation* is underfunded and typically topped up by other RF OP codes or by SRF R&D budget (~10%).

HL activities in principle covered by HL.

Unexpected problems (leaks, multiple re-tests, etc) are not fully covered.

LHC - related **FCC Collaborations (PERLE, Soleil, EIC..) Muon Collider RF** separated beams **Axions**

Targeted R&D

Fundamental R&D and infrastructure

4 main areas:

i) substrate fabrication for coated cavities (mostly with MME) coatings with various methods and various superconductors (with VSC). procedures: for increased iii)

> performance test environment.

iv) infrastructure, cold testing V)

Funding: Mostly funded by study-specific funding, partly funded by SRF R&D budget (~15%, specifically LHC).

Funding: Bulk (~75%) of SRF R&D budget goes in this area, some specific items funded by FCC.

SRF R&D Activities

Nb/Cu cavities

Electron Beam deflector: welding from the inside !

1.3 GHz Nb cavity for KEK

1.3 GHz Cu cavity for CERN

Additive manufacturing of niobium

FCC: RF R&D program

Coordination. parameters and lesign

Coordination and review Challenge the operational scenarios (timeline, $cost$...)

Cavity Studies & Beam Dynamics

- Determine the cavity design for each FCC machines.
- Validate the HOM damping schemes
- Carry out the beamcavity interactions studies
- Evaluate the cavity control system (LLRF) challenges

Cavity Engineering & Fabrication

- · Push the limits of fabrication technologies: seamless, internal
	- welding, precision machining, 3D printing (?) • Built a cavity for Z
		- machine
-
- -

SRF & Substrate Preparation

- Establish the limits of surface preparation and Nb coatings
- **Optimize HIPIMS** coatings using 1.3 **GHz seamless** cavities
- Pursue exploration of A₁₅
- Prepare and validate a cavity for Z machine

Cryomodule **Development**

- Develop a test bed for new cavity, FPC and CM technologies
- · re-assess generic CM challenges: thermal performances. magnetic shielding. cavity & FPC support,...
- · study HOM power extraction schemes for Z machine
- · define feasibility of 2K and 4.5 K operation (SWELL)
- built a CM mockup to validate cavity for Z machine

FPC & HOM Couplers

Push the limits of FPC

adaptability (SWELL,

design & production

performances

Towards large

• HOMC mechanical

· Towards 1 MW

(baseline)

baseline)

 $\ddot{}$

High power RF Systems

- **Challenge RF power** systems and power distribution schemes
- Demonstrate HE two stage technology (baseline)
- **Evaluate alternative** technologies (SWELL, baseline)

CLIC – X-band

- **Optimise and develop the X-band core-technology** by exploiting the existing experimental facilities, the High Gradient test stands, for testing and verifications of prototypes made within the collaboration;
- Maintain linear collider and linac design capabilities;
- Continue **High Efficiency klystron** optimisation in a coordinated effort with other studies and projects at CERN with similar needs;
- **Continue high gradient studies, using the CLEAR facility**, including among others wakefields, instrumentation for nano-beams, medical accelerators based on the technology;
- Follow up with collaborators the **many smaller projects outside CERN where X-band technology is used** – for medical, industrial and research linacs, providing very relevant effort/studies for CLIC, including industrial capability build up;

NC Linac Technology status

Roadmap Plan - Overview

Superconducting RF

- High quality factor bulk niobium
- ▶ Field emission reduction
- Thin superconducting films
- \triangleright SRF couplers
- ▶ Normal-conducting RF
	- Design, modelling and simulations
	- Manufacturing technology
	- mm-wave and higher frequencies
- ▶ Powering and LLRF
	- High-efficiency sources
	- mm-wave and gyro devices
	- Power need reduction
	- LLRF
	- Applications of AI / ML

Muon Collider

International Design Study

Main foreseen R&D lines:

- **High field superconducting magnets**
	- Collider ring, interaction region, muon cooling, target area, …
- **Fast-ramping magnets and efficient energy recovery**
	- RT or HTS magnets in accelerator, recovery of magnetic energy
- **Superconducting RF**
	- Efficient acceleration with high gradients
- **Normal conducting RF**
	- Very high fields in muon cooling system to minimize muon loss
- **Target area with high proton beam power**
	- Stress in target, radiation in magnets and RF components
- **Re-optimization of muon cooling system**

It is, and will be, intensely collaborative!

See Christian Carli – up next

Timeline until next ESU

Shrinking the Size of Particle Physics Facility

Can we shrink the Linear Collider, provide e and e⁺ beams in the TeV energy regime and produce $> 10^{34}$ cm⁻² s⁻¹ luminosity?

Fig. 4.3: A plasma cell is shown here in comparison to the super-conducting accelerator FLASH at DESY. Image credit: DESY, H. Mueller-Elsner

Fig. 4.5: Building blocks of a plasma wakefield accelerator: this setup, only a few centimeters in size, is used to generate a plasma channel. Image: DESY, H. Mueller-Elsner

High Gradient Plasma and laser Accelerators

HIGH GRADIENT PLASMA AND LASER ACCELERATORS

Accelerator R&D Roadmap Pillars

FEASIBILITY, PRE-CDR **STUDY**

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis **Concept:** Comparative paper study (main concepts included)

Milestones: Report high energy e and e⁺ linac module case studies, report physics case(s) Deliverable: Feasibility and pre-CDR report in 2025 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications **Concept:** Prioritised list of R&D that can be performed at existing, planned R&D infrastructures in national, European, international landscape

Milestones: High-rep rate plasma module, high-efficiency module with high beam quality, scaling of **DLA/THz accelerators**

Deliverable: Technical readiness level (TRL) report in 2025 for European, national decision makers

INTEGRATION & OUTREACH

Syneray and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...) **Access: Establishing framework** for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

Goal is to complement large 'external' investment in plasmas

Ensure that the HEP-specific aspects are fully covered

Drive for plausible case for largescale project at next ESPPU

Long term plans

2025 - Feasibility and pre-CDR Report on Advanced Accelerators for Particle Physics. This includes an assessment of Technical Readiness Levels (TRL), taking into account results from technical milestones until 2025.

2027 – Definition of physics case and selection of technology base for a Conceptual Design Report (CDR), in accordance with guidance from the European Strategy. An update on the timeline will be provided appropriate to particle physics requirements and realistically achievable goals.

2031 – Publication of a CDR for a Plasma-Based Particle Physics collider.

2032 – Start of Technical Design Report (TDR), prototyping and preparation phase. Eventual start of a dedicated test facility (to be defined in the pre-CDR report).

2039 – Decision on construction, taking into account the results of the advanced accelerator R&D and the international landscape of colliders.

2040 – Start of advanced collider construction.

Beyond 2050 – It is expected that a plasma-based collider can only become available for particle physics experiments beyond 2050, given the required feasibility and R&D work described in this report

Task breakdown Minimal scheme

Energy Recovery Linacs (ERL)

- beam used once
- but power recirculated
- ambitious collision parameters lead to low beam intensity

\rightarrow overall low energy consumption, but higher initial investments

ERL Objectives

3 part programme

- Support and exploit ongoing facility programmes (worldwide)
- Focussed technical R&D into key technologies
- Development or upgrade European facilities for mid-2020s

Relevant to both absolute performance and sustainability of future machines

ERL Plan

Technology R&D

Two main areas: electron guns and SRF

Electron Guns – options include thermionic, CW DC, NCRF and SRF

- Examples exist of all of these gun types, mostly at lower performance
- Need to down-select two and build prototypes at full specifications
- Example: PERLE electron gun must deliver 20 mA (same as LHeC)
	- Easy for unpolarized electrons, harder for polarized electrons

SRF – ERLs have some specific features that require additional R&D to that of SRF accelerators

- Higher Order Modes are extremely important, requires careful mode analysis and heavy damping
- Fast Reactive Tuner (FRT) technology can drastically reduce RF power requirements
- Example: PERLE cryomodules must support 120 mA (3-pass accelerating, 3-pass decelerating)

Other technology areas: arcs, beam dynamics, beam loss, separate recovery transport

ERLs - Sustainability

Any future particle accelerator facility is expected to be sustainable!

The accelerator community often conceives very large and energy-hungry machines, but we have an obligation to significantly improve energy efficiency to receive support from society

Methods to improve energy efficiency are already a part of any strategy towards future accelerator facilities

ERLs are an innovative, high luminosity, green accelerator concept, for HEP, NP and industrial applications with far reaching impacts for science and society

Dumping the beam at injection energy is environmentally friendly

ERLs are one of the key technologies for a sustainable HEP future

Sustainability, societal impact – in general

Environmental sustainability should be/has become a primary consideration

Objective metrics should allow judgment of the cost and impact of future facilities over their entire life cycle.

Emphasis should be placed on **prompt scientific exploitation** of R&D outputs

Practical considerations of manufacturing, assembly, testing, and commissioning should factor into the design and parameters of future machines with the close **engagement of industry**

Close cooperation between European and international laboratories is required

Training and professional development of accelerator physicists is a key factor in sustaining a vibrant and productive field

Energy Efficiency of Future Colliders

Accelerators and Sustainability

Future machines – full lifecycle

- Construction to dismantling
- Technology: SRF, klystrons, magnets (SC, HTS, permanent)
- Design: optics, FFA, ERLs
- Technical infrastructure: efficiency, heat recovery

Innovative technology

- Power/energy distribution (HTS, smart grids, hydrogen...)
- Energy storage (SC magnets, hydrogen…)

Support to alternatives

- Fusion ITER
- ADS, thorium MYRHHA

Exploitation/energy use

- Energy Management Panel (heat recovery, targeted consolidation (magnets, RF, power converters), greenhouse gases, HVAC efficiency)
- CERN to adopt ISO 50001 efficient energy management standards **Climate research**
	- CLOUD

Procurement

• Energy use considered in system design, specifications, arbitration

Conclusions

ESPP has bequeathed a challenging charge with the aim of providing a technological base for possible future developments in the field

Development of the Roadmap – has been an interesting, not obvious process

Implementation, funding, working together is going to required the strengthening of existing collaborative links… ongoing

But the initiative does provide an opportunity, visible and important focus for funding agencies, a formal reporting line to CERN Council and member state representatives.

We must recognize the increasing importance of sustainability and societal impact and look for these to become a core component of future developments