

Nuclear Energy Research Institute Status and Plans UPHUK VIII, V. Erkcan Özcan, 5 September 2022

Brief Overview of TENMAK

Research Campuses

Ankara Sarayköy Campus

Will be TENMAK's main research campus. Accelerator, irradiation and detector technologies.

İstanbul Çekmece Campus

BOREN, TEMEN and the

city center.

administrative campus are located closer to Ankara

First campus established in 1958. Nuclear reactor, fuel, waste and related technologies.

Example NÜKEN R&D Projects

- Beta-voltaic battery
- B-10 enrichment through chemical process
- Deuterium fusion reactor
- Radiation early warning system (RESA)
- Radiation monitoring
 system (checkpoints and
 border gates)
- Mutation breeding in plants (crops and ornamental)

A Selection of NÜKEN Services

- Radiation metrology, test and calibration
- Dosimeter services
- Biological dose determination
- Production and maintenance of radiation detection systems
- Co60 irradiation of spices, medical equipment, etc.
- Identification of radioactive matter,
- Emergency preparedness, CBRN calls

In collaboration with NRC: Auditing of radiation therapy and imaging devices

Beta-voltaic Battery

- Designed for stable running lifetime >20-25 years.
- 2018: First prototype with Ni-63.
- 2022: 5 times better performance, Ni-63 and tritium.

Next-Generation Transparent-Ceramic Scintillator

NÜKEN								NÜKEN
Scintillator Formula	Doping	Density (g/cm³)	#Photons per MeV	Decay Time (ns)	Emission Peak (nm)	Resolution (%)	GYGA G	GYG/ .G
Srl2:Eu	Eu2+	4.5	104,000	1.10	432	2.62	23	20
LaBr3:Ce	Ce3+	5.1	78,000	26	-	2		
CeBr3	Ce3+	5.2	68,000	17	371	3.2		
GdI3:Ce	Ce3+	5.2	44,000	45	560	4.7	-	
Lu3Al5O12:Pr	Pr3+	6.7	19,000	20	310	4.6	те	NMAK
Nal:Tl	Tl+	3.6	45,000	60	415	7.1		
GYGAG	Ce3+	6.9	71,000	20	550	3.8	Dozlar	ISU/Baat #2399 TKaudet IBIIai IIKEN
LaYO	-	5.7	20,000	20	445	4.9	6	00)

♀ 🗴 🕕 🗇 🐨 🖌 %56 🔒 13:3

Anlık: 5.000 µSv/saat Ortalama: 2.70 µSv/saat Toplam: 0.03 µSv (I) TENMAK08: Şarj: %100

LocationData<lat: 40.0604589, long: 32.6026255 Ortalama 🕢 Anlık 🛛 Grafik Kayması

- New gamma dose rate meter developed using our scintillators lacksquare
 - Dead time < 20 μs

ENMAK

Linear response with Cs-137 source in the range : 2.5 mSv/hr – 381 mSv/hr

Plastic Scintillators - Bulk

- PS production experience going back more than a decade
- Quality tests at CERN

Recently started producing large blocks, to be integrated into the radiation tracking system at the border gates

Radioactivity Detection System on a UAV

Detect 1µg of Cs137 from a distance of ~2.5m.

GM Tube Production System

- Ongoing project to construct a system to mix gases and fill them into glass tubes with appropriate cathode and anode.
 - Aim to produce GM tubes to fully supply the GM-based radiation detectors (dose and rate meters) that have been produced by the institute for decades.

Electron Accelerator Facility

 ICT, 350-500 keV, 1-20 mA electrostatic electron accelerator

- Aiming to bring electron beam treatment technology to use in Turkish industry.
- Flue gas, waste water and solid/liquid irradiation systems implemented in NUKEN.

Upcoming workshop in collaboration with IAEA. October 17-21, 2022.

NÜKEN RFQ

- SANAEM Project Prometheus.
 - Turkey's first RFQ; including its RF PSU, transmission line, circulator, beam diagnostic system, cavities, beam-pull system
 - Commissioned with Indium o-rings, plasma cleaning
 - 20 keV to 1.3 MeV, 352.21 MHz, 1.2 m

Aim to upgrade the machine for use with PIXE, RBS!

Proton Accelerator Facility

- 15-30 MeV, 1.2mA proton cyclotron from IBA:
 - 3 beam lines for radioisotope production, gas/liquid/solid targets
 - FDG, ¹²³I-Nal and ²⁰¹TI-TICI
 - In-house generator and production setup for ⁶⁸Ga (ongoing project)
 - 1 R&D beam line split with 5-port magnet:

- defocusing for space applications: 20x15 cm² test area, wide selectable flux menu (10⁵-10¹⁰p/cm²/s). Some quad magnets produced in Turkey & tested at CERN
 - in-house beam degrader from 15 MeV down to ~2MeV - pA current for PIXE, PIGE, RBS, PESA (ongoing project)

R&D irradiation room: Irradiation service in vacuum or in air. Being redesigned into an autonomous room.

The beam can also be directed towards METU defocussing beamline.

Arpa

Nükleer Pil (GaAs)

GaAs

Bakliyat türleri

Simulating Neutron Damage

- Investigation of the proton beam radiation effects on the micro structural properties of oxide dispersion nickel/iron-based alloys manufactured by additive methods for future reactor applications
- In collaboration with Dr. Eda Aydoğan from METU Dept. of Met. and Mat. Eng.
- Neutron damage can be simulated with protons.
 - Decrease proton beam energy down to couple MeV.
 - Produce and test new materials

Dpa (displacements per atom) is the number of times that an atom is displaced from its original lattice position

3 MeV mono-energitic proton beam on Hastalloy @ 3.5E19 p/cm2 on 0.36 cm2 surface

05.09.22

- TENMAK has been taking concrete steps toward restructuring itself as an agile agency that actively listens to academics, forges collaborations with universities and industry, aims to be a reliable supporter of big science.
- We welcome opportunities for all sorts of collaboration.
 - In particular, we are looking for any applications of our 30 MeV beam and its upgrades.

Mustafa Kemal Mah. Dumlupinar Bulvari, No. 192 Çankaya, 06510 Ankara T: +90 312 295 87 00 | +90 312 295 89 53 F: +90 312 295 89 53