

UNIVERSITÄT BERN

Production of new radioisotopes for theranostics using a medical cyclotron

Saverio Braccini

Albert Einstein Center for Fundamental Physics (AEC) Laboratory for High Energy Physics (LHEP) University of Bern, Switzerland

Outline

- > Compact medical PET cyclotrons: *tools for medicine and science*
- > SWAN project in Bern: *production and research under the same roof*
- > Positron Emission Tomography: *conventional and novel radioisotopes*
 - Liquid vs solid targets
- > Production of new radioisotopes for theranostics
 - > Tools and methods from high-energy physics
 - Some achievements with the Bern cyclotron

Medical cyclotrons

	Main Use	Typical User	Max. Proton Energy (MeV)	Max. Beam Current (µA)
А	Proton therapy	Hospital	200-250	10 ⁻³
В	Radioisotope production / research	Research laboratory	70	500-700
С	SPECT radioisotope production	Research lab. / industry	30	500-1000
D	PET radioisotope production	Hospital / industry	15-25	100-400
Е	PET radioisotope production	Hospital	10-12	50

A) Varian Comet (250 MeV)

B) Best 70p (70 MeV)

C) ACSI TR30 (30 MeV)

Compact medical PET cyclotrons

- Commercial accelerators: ~20 MeV protons, ~100 μA
- > Designed for: hospital based facilities + radiopharmaceutical industry
- > > 500 in operation in the world (number continuously growing)

Compact medical PET cyclotrons *Physics must answer to medicine*

> FDG most common PET radiotracer → ¹⁸F (1 dose ~400 MBq)

- > Beam energy: 15-25 MeV
- > 150 μ A in 120 min. \rightarrow 500 GBq of ¹⁸F \rightarrow 250 GBq of FDG
- > $T_{1/2} = 110 \text{ min.} \rightarrow \text{Production(s) every night}$

... and during the day ?

The Bern medical cyclotron and its Beam Transport Line (BTL)

wan

ISOTOPEN

INIVERSITÄT

- > IBA 18 MeV high current cyclotron (up to 150 μ A) 2 H⁻ ion sources
- > 6 ¹⁸F liquid targets: daily production
- > External beam line in a separate bunker: research μ^b
- Specific method to produce currents down to 1 pA M. Auger et al., Meas. Sci. Technol. 26 (2015) 094006

The hot labs

- > 3 GMP production labs (SWAN Isotopen AG ¹⁸F, ⁶⁸Ga, ¹⁷⁷Lu radiopharmaceuticals)
- > 1 GMP clinical research lab (Nuclear Medicne, Inselspital)

The Bern cyclotron

Multi-disciplinary research activities with the BTL

S. Braccini, AIP Conf. Proc. vol. 1525, p. 144, 2013 10

Radionuclides for theranostics in nuclear medicine

> Promising pairs:

- 68Ga/177Lu and 68Ga/225Ac
- 43Sc/47Sc and 44Sc/47Sc
- ⁶¹Cu/⁶⁷Cu and ⁶⁴Cu/⁶⁷Cu
- ¹⁵⁵Tb/¹⁴⁹Tb and ¹⁵⁵Tb/¹⁶¹Tb
- > Radiometals
 - Solid targets:
 - ~10 mg
 - ~ 5 mm diameter
 - Material: powder
 - Beam: ?

Commercial solid target station

> IBA Nirta "COSTIS"

- >Target:
 - > 24 mm diameter 2 mm thick disk
 - > electro-plated materials
- > Manual insertion and recovery of the disk
- > Cooling: water in the back, helium in the front

Our strategy for the production of radioisotopes for theranostics

- Accurate knowledge of the beam (position, shape, energy)
 Beam monitoring detectors
- Novel target + transfer system
- > Accurate knowledge of the production cross sections (impurities!)
- > Active system to focus the beam

- > 1D beam profiler based on (doped) optical fibres passed through the beam
- > On-line, minimal interference with the beam
- > Developed by LHEP and commercialized by D-Pace (Canada)

S. Braccini et al., 2012 JINST 7 T02001

On-line monitoring with UniBEaM

UPHUK8 - 05.09.2022 - SB

The target "coin"

- > High-purity aluminum
- Two halves kept together by permanent magnets
 SmCo, 350°C Curie temperature
- > O-ring (viton) to avoid radioactive degasing
- Variable thickness of the front (energy variation)

The Hyperloop by LHEP

The solid target station and the pneumatic transfer system (by TEMA)

- 6 shuttles
- 2 delivery pathways
 - Hot-cell + BTL bunker

Beam energy measurement (1): magnetic deflection in the BTL

Figure 2. Experimental set-up: the Beam Transfer Line (BTL) quadrupole doublet (1), the dipole bending magnet (2), and the UniBEaM detector (3).

WARNING

The beam energy changes with the cyclotron operational parameters!

P. Häffner et al., Instruments 2019, 3(4), 63

Beam energy measurement (2): special "coin" for the STS

UPHUK8 - 05.09.2022 - SB

Cross section measurements with a novel method

T. S. Carzaniga, M. Auger, S. Braccini, M. Bunka, A. Ereditato, K. P. Nesteruk, P. Scampoli, A. Türler, N. P. van der Meulen, *Measurement of Sc-43 and Sc-44 production cross-section with an 18 MeV medical PET cyclotron*, Appl Radiat Isot. 2017 Nov; 129:96-102.

The target station for cross section measurements

Measured cross-sections: ⁴³Sc, ⁴⁴Sc, ⁴⁷Sc, ⁴⁸V, ⁶¹Cu, ⁶⁴Cu, ⁶⁷Cu, ⁶⁶Ga, ⁶⁷Ga, ⁶⁸Ga, ¹⁵⁵Tb, ¹⁶⁵Er, ¹⁶⁵Tm, ¹⁶⁷Tm

Cross sections and radio-nuclidic purity: the case of ⁶⁸Ga

Use of two different enriched materials: the (p,n) and (p,2n) ⁶⁷Ga nuclear reactions can be measured!

S. Braccini at al., Optimization of ⁶⁸Ga production at an 18 MeV medical cyclotron with solid targets by means of cross-section measurement of ⁶⁶Ga, ⁶⁷Ga and ⁶⁸Ga, Appl. Radiation and Isotopes, Volume 186, August 2022

Yield, purity and production tests: example ⁶⁸Ga

UPHUK8 - 05.09.2022 - SB

Some produced radioisotopes

Isotope	Reaction	Target	Current $[\mu A]$	Irr. Time [h]	A_{EOB} [GBq]
^{44}Sc	(p,n)	^{enr44} CaO pellet	5	5	~ 15
⁴⁸ V *	(p,n)	nat Ti metal foil	10	1	~ 0.15
⁶¹ Cu	(\mathbf{p},α)	^{enr64} Zn pellet	25	1.9	~ 1
⁶⁴ Cu	(p,n)	^{enr64} Ni deposition	15	10	~ 20
⁶⁸ Ga	(p,n)	^{enr68} Zn pellet	5	0.5	~ 15
X Pm **	(p,X)	^{nat} Nd disc	5	3	$\sim 10^{-7}$
$^{155}\mathrm{Tb}$	(p,n)	^{enr155} Gd pellet	2.5	1.15	$\sim \! 0.005$
$^{165}\mathrm{Er}$	(p,n)	^{nat} Ho metal disk	10	10	~ 1.5
$^{165}\mathrm{Tm}$	(p,2n)	$^{enr166}\mathrm{Er}_{2}\mathrm{O}_{3}$	2.5	0.5	~ 1.5

> Other medical radioisotopes under study: ⁴³Sc, ⁴⁷Sc, ⁶⁷Cu and ¹⁶⁷Tm

> ⁴⁸V and Pm for fundamental physics

G. Dellepiane et al., Research on theranostic radioisotope production at the Bern medical Cyclotron, Il Nuovo Cimento, 2021

* High Efficiency Cyclotron Trap Assisted Positron Moderator, Instruments 2 (2018) 10.
** High-resolution laser resonance ionization spectroscopy of ^{143–147}Pm, Eur. Phys. J. A (2020) 56:69

⁴⁴Sc is ready for clinical applications

Molecules 2020, 25(20), 4706

Article

Developments toward the Implementation of ⁴⁴Sc Production at a Medical Cyclotron

Nicholas P. van der Meulen ^{1,2,*}, Roger Hasler ², Zeynep Talip ², Pascal V. Grundler ², Chiara Favaretto ², Christoph A. Umbricht ², Cristina Müller ², Gaia Dellepiane ³, Tommaso S. Carzaniga ³ and Saverio Braccini ³

- ¹ Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- ² Center of Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; rogerhasler26@gmail.com (R.H.); zeynep.talip@psi.ch (Z.T.); pascal.grundler@psi.ch (P.V.G.); chiara.favaretto@psi.ch (C.F.); christoph.umbricht@gmail.com (C Cristina.mueller@psi.ch (C.M.)
- ³ Albert Einstein Center for Fundamental Physics, Laboratory of High Energy Physics, University 3012 Bern, Switzerland; gaia.dellepiane@lhep.unibe.ch (G.D.); tommaso.carzaniga@lhep.unibe. saverio.braccini@lhep.unibe.ch (S.B.)

In collaboration with PSI

IBA Award 2020

Work in progress : Automatic Focusing System (AFS)

1. Cyclotron

- 2. Mini-PET Beamline (MBL)
- 3. Two-dimensional UniBEaM
- 4. Solid Target Station (STS)
- Solid Target Transfer System (STTS)
- 6. Solid Target Loading System (STLS or Hyperloop)

Häffner, P. D. at al., An Active Irradiation System with Automatic Beam Positioning and Focusing for a Medical Cyclotron, Appl. Sci. 2021, 11(6), 2452; P. Häffner, PhD Thesis, 2021

Tests with the BTL: Beam recovery with the AFS

Production yield improved by a factor 20 if compared to an unfocused beam

Conclusions and Outlook

- Compact medical cyclotrons: tools of choice for PET radioisotope production in a hospital-based environment
- Production and research can run in parallel

> The Bern cyclotron laboratory

- FDG industrial GMP production is running smoothly
- Multi-disciplinary research activities: <u>radioisotopes for theranostics</u>, particle detectors, radiation hardness, …
- > ... we are open to collaborations!

Acknowledgements

- Seniors and PostDocs: P. Scampoli, I. Mateu, L. Mercolli, P. Casolaro, L. Franconi, C. Belver Aguilar
- PhD students: G. Dellepiane, A. Gottstein, A. Oliveira, P. Häffner (2021), T. Carzaniga (2019), K. Nesteruk (2017)
- Master and Bachelor Students: M. Schmid (2021), E. Zyaee (2021), N. Voeten (2022), D. Wüthrich (2019), J. Askew, D. Wermelinger, M. Wenger, N. Kämpfer (2020)
- > LHEP mechanics and electronics workshop

https://www.lhep.unibe.ch/research/medical_applications/index_eng.html