### LINAC proton activities at CERN

.

### Alessandra M Lombardi (BE-ABP-HSL)





MED

GUN

CĚRN



### Outline

Highlight of Linac 4 (2006-2020)

R&D on LINAC4 was applied in medical and societal projects

LIGHT: 750MHz RFQ for medical protons (2015-2017)

ELISA-MACHINA : 750 MHZ RFQ for societal use (2017-2022)

Name-to-be found : 750 MHZ RFQ for carbon ion (2020-under construction)





UPHUK VIII - ALESSANDRA LOMBARDI (CERN)



# Baseline beam parameters

| LINAC4 – CDR -2006                                                     | LINAC4 – achieved (2016) and perfected 2016-2019                                                       |                                                                                                                        |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| H-                                                                     | Stripping and more tested in Half Sector Test                                                          |                                                                                                                        |
| 70mA peak at the source<br>65 ma peak at 3 MeV<br>40 mA after chopping | 50mA peak (in twice the acceptance of the RFQ)<br>30 mA peak at 3 MeV (record)<br>20 mA after chopping | Peak current from the source<br>Average beam current after chopping (LEBT and RFQ<br>transmission and chopping factor) |
| 160 MeV                                                                | 160.48 MeV                                                                                             | All RF structures performing to specs                                                                                  |
| 0.4 π mm mrad                                                          | 0.3 π mm mrad (at 160MeV)                                                                              | Smaller emittance, allows for more turns injected                                                                      |
| 400 µsec 1Hz (4 rings)                                                 | Up to 600 µsec 1Hz                                                                                     | Longer injection in the PSB (100-150turns)                                                                             |
| Fast Chopping at 3 MeV                                                 | Demonstrated , including transmitted beam quality                                                      | Unprecedented flexibility: Beam from 1µsec to 150µse                                                                   |
| Energy painting with the last accelerating modules                     | proof of principle of energy painting                                                                  | Measured phase variation for 100 $\mu s$ long pulse when a energy variation is programmed along the pulse –            |

# Commissioning in stages of increased energy



06.09.2022

### Temporary measurement benches

#### Low energy test bench at 3 and 12 MeV

Direct measurements:

Transverse emittance with slit-grid.

Energy – Energy spread with a spectrometer.

Taking data for preparing and gaining confidence in higher energies commissioning strategy.

#### High energy test bench at 50 and 107 MeV

Indirect measurements:

Transverse emittance with 3 profile monitors. Longitudinal emittance with bunch shape monitor. Energy with Time of Flight.

**Permanent measurement line in the transfer line for 160 MeV** 4 profile monitors, beam current transformer and BPMs.



### This turned out to be a CRUCIAL STEP-see next slide

### Extensive measurements at 45 keV

1- take measurements varying solenoidal field and generate in tracking code



2 – back-trace to source out

3 - Result : we have an empirical input beam distribution that very well represents the dynamics in the LEBT and the rest of the accelerator.



### Transverse emittance at higher energies

Transverse emittances were indirectly measured with:

- the "Forward method"
- the "Hybrid Tomographic method"

Both based on: The 3 profiles method – Including the space charge forces with multi-particle simulation codes.



### Innovations in LINAC4



3 MeV/ 352 MHz/ 3 m long RFQ Commissioned with beam 2013



Fast chopper, validated 2013 Risetime<10nsec/ extinguish factor 100%



PMQ for tank2 , 60 mm in diameter and 80 mm in length Produced in European industry for the first time

### Drift Tube Linac : 3-50 MeV (3-12-30-50 MeV, commissioned in 2 stages Aug 14 and Nov 15)



RF phase (deg)

# Cell Coupled Drift Tube LINAC : 50-100MeV (commissioned June 16)



- 7 modules of 3 accelerating cavities (3 gaps each) and 2 coupling cells,
- quadrupoles outside of RF structure,
- first-ever CCDTL in a working machine!



Average energy vs cavity phase for CCDTL module 3 measured June 2016 with Time-of-Flight

# Pi-mode structure : 100-160 MeV (commissioned Oct 16)



Beam transverse footprint – stripped – 160 MeV at BTV1077, Mar 2017

Def Inter//home.cem







# Reliability run

From 2016 it was all about intensity and reliability : 160 MeV on the dump

Criterium for LINAC4 availability: Current in BCT before the dump



- Insure a smooth transition from commissioning to operation: train operators, necessary software development, learn to deal with the increased flexibility.
- 2. <u>Find any weak points and mend them in time</u> for the connection
- 3. <u>Achieve a *beam-availability* for the PSB as high</u> <u>as possible</u> and possibly above 90% : importance of the fault tracking system

LINAC4 run 24/7 in parallel to normal operation on **best-effort basis** with:

- Operators deal with issues where possible
- Expert availability and interventions only during working hours
- Faults are fully tracked (Accelerator Fault Tracker AFT)
- Stop AFT Clock during off-hours when fault needs expert intervention & during MDs

Thorough logbook verification w/ Timber/LASER information

### First availability run

#### **Period: 13/07/2017 – 15/05/2018** Last update: 05/06/2018

| Availability | Fault Count | Operation | Suspended OP | Effective<br>Operation | Fault Mean Time<br>to Repair |
|--------------|-------------|-----------|--------------|------------------------|------------------------------|
| 91.5%        | 449         | 23 weeks  | ~ 8 weeks    | ~15 weeks              | ~29 min                      |



Effective operation Linac4 Fault time — Availability

Week 47: Anode module change 2x, Pre-Chopper connector to feedthrough to vacuum

### 2019 : Beam to the LBE !



### LINAC4: measured beam characteristics

| Parameter                                              | Measurement                       |
|--------------------------------------------------------|-----------------------------------|
| Peak intensity at 160 MeV                              | 25 mA                             |
| Emittance rms normalized                               | 0.3 $\pi$ mm mrad                 |
| Max usable pulse length                                | 600 μs                            |
| Stability shot-to-shot                                 | 2%                                |
| Pulse flatness                                         | 2% for 160µs pulse                |
|                                                        | 5% fpr 600µs pulse                |
| Beam position jitter along the pulse at the linac dump | +/- 1mm                           |
| Fast Chopping at 3 MeV                                 | Rise time < 10ns                  |
|                                                        | Extinction factor close to 100%   |
|                                                        | onprecedented nexibility: beam 1- |
|                                                        | 600 μs                            |

#### **AVALIABILTY 2021 : 99%**

Operation and beam commissioning of LIGHT proton accelerator

Wednesday Veliko Dimov

09:45 - 10:10

## LIGHT pre-injector

2015-16

2017

<u> 2017 - present</u>

Bodrum / Türkiye

|      | • S. Myers : head of office for medical applications                                       |  |
|------|--------------------------------------------------------------------------------------------|--|
|      | <ul> <li>Study efficient accelerator in the energy range few keV to 5 MeV for a</li> </ul> |  |
| 2014 | LINAC-based hadron-therapy facility (3GHz)                                                 |  |

- 2015 Construction and assembly at CERN
- 2016 installation at SA2 includes a commercial proton source
  - First beam in February
  - Validation of the beam dynamics
  - CERN was granted a patent

 Used by ADAM/AVO at CERN as a pre-injector for a hadron based facility (tests up to 70MeV)

# 2015 - CONSTRUCTION

| Source and RFQ parameters                        |                |
|--------------------------------------------------|----------------|
| RF Frequency                                     | 750 MHz        |
| Input                                            | 40 keV         |
| Output Energy                                    | 5 MeV          |
| Length                                           | 2m             |
| Vane voltage                                     | 65kV           |
| Peak RF power                                    | 400kW          |
| Duty cycle / max                                 | 0.4% /(5%max)  |
| Input/Output Pulse Current<br>in 3GHz acceptance | 100/30 μA      |
| Transv. emittance 90%                            | 0.1 pi mm mrad |
| Average aperture (r0)                            | 2mm            |
| Maximum modulation                               | 3              |



March 15 - Machining (±10 µm)



June 15 - First brazing



May 15- Assembling (±15  $\mu m$  )



October 15 – Second brazing



# 2016 : assembly, tuning and high power RF



**RF** measurements

Ready for beam tests

# 2017 : proton beam at SA2



LOW ENERGY PRE-INJECTOR for ADAM/AVO test facility at SA2

Diagnostic Be.

MEBT

REQ

Radically new design from the beam dynamics point of view-validated by beam measurements. It build on the experience of the LINAC4 RFQ for RF design and mechanical design.

Built in the CERN workshop : less than 2 years from start of construction to installation, this included RF tuning.

A copy is built in industry.

# Foundation for 4 other RFQs

Ireland



Copy for medical facility: Built in Italian industry, First beam July21



<u>Redesigned for Carbon6+</u>: Built (1 out of 4 modules) in Spanish industry collaboration agreement with CIEMAT, due in 2022 Test at CERN ideally in SA2







**Redesigned for portability** :

ELISA (2022 science gateway)

Groatia MACHINA (in Florence)



Austria



### MACHINA



### MACHINA 28Apr22 (002)

Light from the Bragg peak at 2 MeV.

| Source and RFQ parameters                        |                |  |
|--------------------------------------------------|----------------|--|
| RF Frequency                                     | 750 MHz        |  |
| Input                                            | 20 keV         |  |
| Output Energy                                    | 2 MeV          |  |
| Length                                           | 1m             |  |
| Vane voltage                                     | 35kV           |  |
| Peak RF power                                    | 100kW          |  |
| Duty cycle / max                                 | 0.4% /(5%max)  |  |
| Input/Output Pulse Current<br>in 3GHz acceptance | 100/30 μA      |  |
| Transv. emittance 90%                            | 0.1 pi mm mrad |  |
| Average aperture (r0)                            | 1.4 mm         |  |
| Maximum modulation                               | 2.8            |  |

### **ELISA**

### Experimental Linac for Surface Analysis

A miniature proton accelerator for Science Gateway



UPHUK VIII - ALESSANDRA LOMBARDI (CERN)

### NEXT challenge : accelerate Carbon in a LINAC

I- Source of fully stripped carbon ion with sufficient quality for use in a medical facility



3- LINAC with a "hospital-friendly" footprint , adaptable to existing buildings<sup>E</sup> and allowing intermediate station for e.g. Radioisotope production

MINISTERIO

**DE CIENCIA** 

E INNOVACIÓN

Ciemat

Centro de Investigaciones

nergiticas, Medicambientale

y Tecnológicas



2- An efficient and easy to use pre-injector

#### Bent linac



### Sources

LINAC is designed for q/m = 1/2

- Helium and fully stripped carbon ions
- Works for protons by reducing Magnetic and Electric field to <sup>1</sup>/<sub>2</sub>

Ultimate source is a EBIS (tests ongoing at MedEGUN) delivering Carbon ions – not yet up to specs

A Helium source allows to validate all the aspects of the pre-injector (mechanics, RF and beam dynamics) without compromise : Helium source (destined to Sarajevo University) shall be ordered within 2022 , ready to use end 2023

A proton source allows to validate beam dynamics but not RF (voltage holding capabilities, stability at high field etc) : proton source ELISA-like with the extraction designed in ABP is ordered with the aim of extracting protons as early as June 2023

### Collaboration CERN-CIEMAT-CDTI-Spanish Industry – RadioFrequencyQuadrupole

🗾 Egile 🌌 Egile | 1-Drawings 2-Precision machings 3-Assembly and brazing 2.0 m long 750 MHz Will deliver Carbon (or Helium) at 5 MeV (total energy) Designed at CERN built in Spanish Industry 2/4 section completed – complete delivery june 2023

# Somehow during 2023 we will have

A proton source designed to inject DIRECTLY into the RFQ – very little room for regulation

A helium source + a Low Energy Beam Transport designed to match a helium beam to the RFQ acceptance

A 750 MHz RFQ designed to accelerate from 15keV/ to 2.5 MeV/u particles with q/m =1/2

# Plans 2023 and beyond

2022 : beam at 2 MeV from ELISA RFQ

2023 : spare of the LINAC4 RFQ ready

Characterize the proton and helium sources for use with the Carbon RFQ (2023)

Accelerate the beam through the Carbon RFQ (2023-2024)

Validate (hopefully ) the 750 MHz RFQ design and proceed to the construction of the second RFQ to bring the beam to 5MeV/u

Test direct injection from the source into an RFQ (and feed back to LINAC4?)

### Milestones in the development of RFQ at CERN.

1990 RFQ2 200 MHz 0.5 MeV /m Power/m 244kW/m P/MeV 670kW/MeV Weight :1200kg/m Ext. diametre : ~45 cm 200mA proton

2007 LINAC4 RFQ 352 MHz 1MeV/m Power/m 133 kW/m P/MeV 135kW/MeV Weight : 400kg/m Ext. diametre : 29 cm 40 mA H- 2014 HF RFQ 750MHz 2.5MeV/m Power/m 200kW/m P/MeV 80 kW/MeV Weight : 100 kg/m Ext. diametre : 13 cm 0.1 mA proton 2019 MACHINA / ELISA 750MHz 2.0MeV/m Power/ m 80kW/m P/MeV 40kW/MeV Weight : 100 kg/m Ext. diametre : 13 cm 0.1 mA proton Portable

#### 2020

Name\_to\_be\_found 750MHz 1.0MeV/m (q/m=1/2) Power/ m 100kW/m P/MeV 80 kW/MeV Weight : 100 kg/m Ext. diametre : 13 cm 0.1 mA carbon ions









