Congratulations for 70th Anniversary

of

Turkish Physical Society

and

Korean Physical Society

We enjoyed 2002 World Cup Semi-final Match (Turkiye 3 : 2 Korea)

And

Korea thanks Turkish Army for one of 16-UN Forces during Korean Conflict in 1950-1953

Brief Facts about Korea

People & Language: Korean (~4,500 yrs in the area) **Area** (South): ~100,000 km² (~38,000 sq. mi.) **Population** (South): 52 million

Recent History:

1945: Divided into North and South
1950~1953: Korean Conflict
1960~1970: Modernization (Migration to cities)
1970~1980: Industrialization (Heavy Industries)
1990~2022: High-tech oriented

Leading Industries:

Electronics, Automobile, Ship-building, Steel, Chemicals, Construction

Economy: GDP = 1.8 T and 35.4 k/capita in 2021

Religion: Christian (~30%), Buddhism (~30%) **Education:** > 80% high-school seniors go to college

Accelerator Facilities in Korea (2022)

4GSR Project (KPS) (Under construction)

Rare Isotope Science Project (RISP) (Under construction)

Won Namkung

PAL-XFEL (10.0 GeV) and PLS-II (3.0 GeV Light Source)

KOMAC (100-MeV Proton Linac)

Status and Prospects of Pohang Accelerator Laboratory (PAL)

UPHUK-VIII Bodrum, Turkiye

September 5-7, 2022

Won Namkung

PAL, POSTECH

Aerial View of PAL

PAL-XFEL (10.0 GeV)

1.1 km

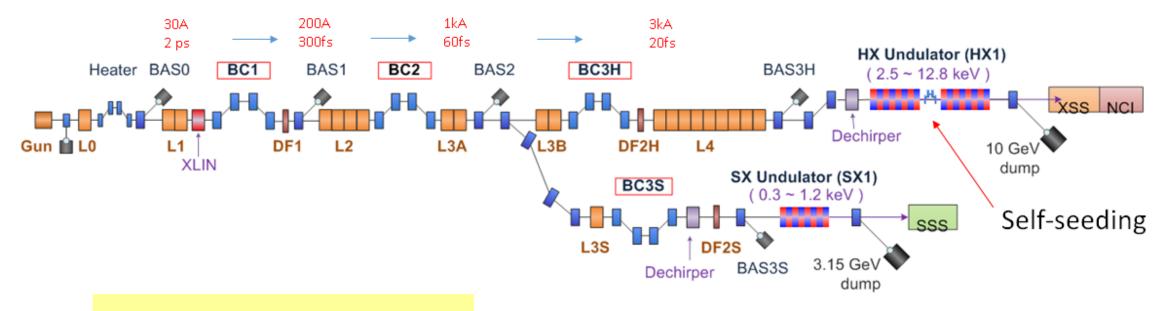
PLS-II (3GeV/400mA) 280 m

170 m

3rd Generation Light Source

Pohang Accelerator Laboratory Overview

- *POSTECH*, a newly established university, proposed to construct a synchrotron light source on its campus in 1988
- PLS is a 3rd generation synchrotron radiation source:
 - 2 GeV injector linac and storage ring with upgrade option to 2.5-GeV
 - Construction Project: April 1988 ~ December 1994
 - Funded by POSCO (60%) & Government (40%)
- Upgraded to 3.0 GeV in 2011 (PLS-II)
- PAL-XFEL (X-ray Free Electron Laser) was constructed in 2015
 - World 3rd after SLAC (US) and SACLA (Japan)
- PAL is donated to Government in 2018
- KPS Project (4.0 GeV, 4GSR) is started with KBSI in Chung-ju (2021-2027)


PAL-XFEL

Initial proposal was to use existing PLS linac to be a leading group member in 2003

Revised proposal in 2010 for 10 GeV XFEL

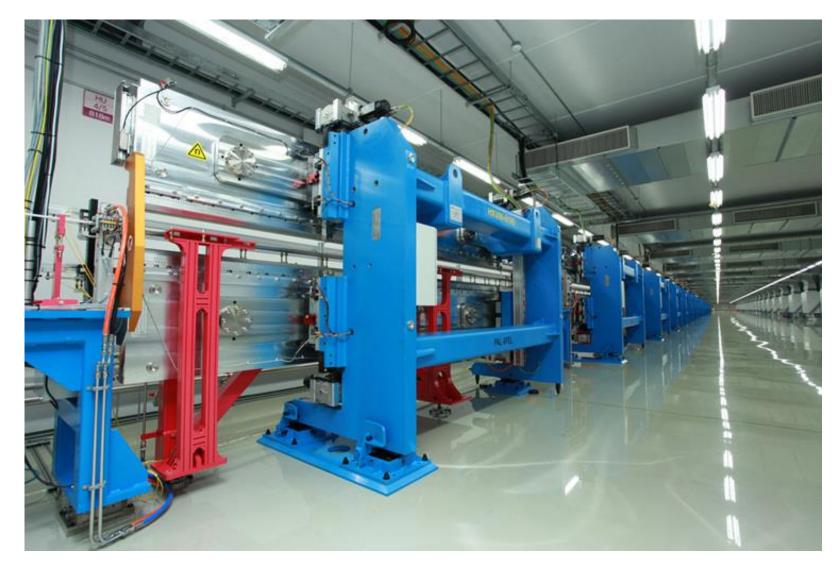
PAL-XFEL Layout and Parameters

Main parameters

e⁻ Energy e⁻ Bunch charge Slice emittance Repetition rate Bunch length Peak current SX line switching 10 GeV 20-200 pC < 0.4 mm mrad 60 Hz 5 fs – 50 fs 3 kA Kicker Magnet

Undulator Line	ΗХ	SX
Photon energy [keV]	2.4 ~ 15	0.28 ~ 1.0
Beam Energy [GeV]	4 ~ 11	3.0
Wavelength Tuning	Energy	Gap
Undulator Type	Planar	Planar
Undulator Period / Gap [mm]	26 / 8.3	35 / 9.0

Linac Tunnel



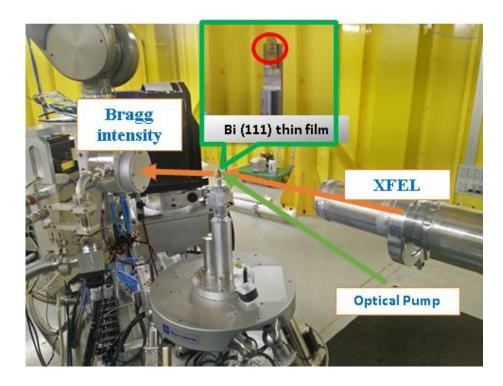
Cross Section of Acceleration. Column

Parameter	Unit	Value
Energy	GeV	10
Charge	pC	200
No. of SLED		42
No. of Acc. Column		173

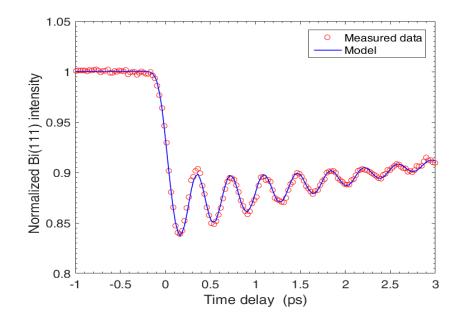
Undulator Hall

Parameter	Unit	Value
No. of Undulator		21
Length	m	5
Period	mm	26.0
Gap	mm	8.3
Wavelength	nm	0.1
Magnetic field	Tesla	0.8124
K		1.9727

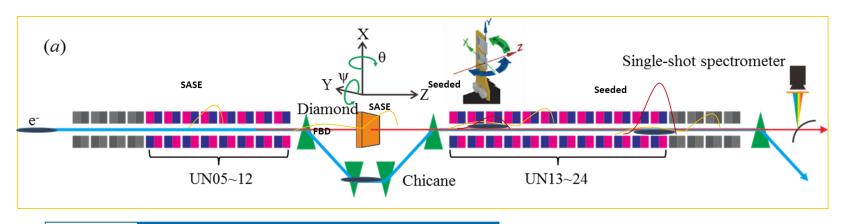
Hard X-ray Experiment Hutches



Hard X-ray Experiment Station

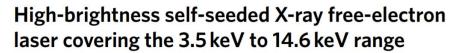


Hard X-ray FEL with Femtosecond Timing Jitter


Bi(111) thin film (50 nm) on GaSb(111)/Si(111) X-ray: 6 keV X-ray size: ~ 60 x 60 um² Laser: 800 nm, 100 fs Detector: MPCCD 0.5M

- No timing jitter correction
- averaged by 50 trials of the time delay scan and normalized by GaSb(111) Bragg peak intensity
- Only slow time-drift correction
- Vibration Frequency : 2.7 THz
- Instrument Response: 137 fs (FWHM)

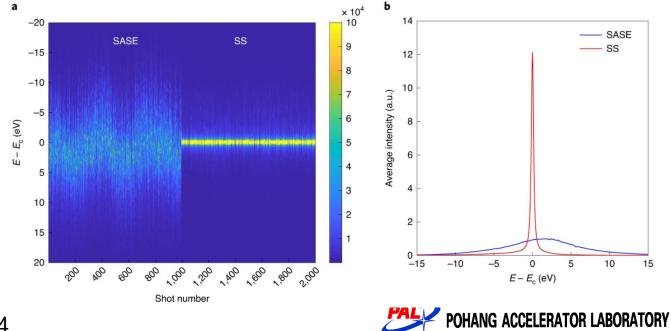
Hard X-ray self seeding



https://doi.org/10.1038/s41566-021-00777-z

ARTICLES

Check for updates


- Ec = 9.7 keV
- SASE bandwidth (FWHM) = 27 eV
- Self-seeding bandwidth (FWHM) =
 0.22 eV
- Averaged pulse energy: ~850 µJ
- FEL Pulse duration = ~ 20 fs

Inhyuk Nam¹⁴, Chang-Ki Min¹⁴, Bonggi Oh¹⁴, Gyujin Kim¹, Donghyun Na¹, Young Jin Suh¹, Haeryong Yang¹, Myung Hoon Cho¹, Changbum Kim¹, Min-Jae Kim¹, Chi Hyun Shim¹, Jun Ho Ko¹, Hoon Heo¹, Jaehyun Park¹, Jangwoo Kim¹, Sehan Park¹, Gisu Park¹, Seonghan Kim¹, Sae Hwan Chun¹, HyoJung Hyun¹, Jae Hyuk Lee¹, Kyung Sook Kim¹, Intae Eom¹, Seungyu Rah¹, Deming Shu², Kwang-Je Kim², Sergey Terentyev³, Vladimir Blank³, Yuri Shvyd'ko^{2²}, Sang Jae Lee¹ and Heung-Sik Kang¹

A self-seeded X-ray free-electron laser (XFEL) is a promising approach to realize bright, fully coherent free-electron laser (FEL) sources in the hard X-ray domain that have been a long-standing issue with longitudinal coherence remaining challenging. At the Pohang Accelerator Laboratory XFEL, we have demonstrated a hard X-ray self-seeded XFEL with a peak brightness of 3.2×10^{35} photons s⁻¹ mm⁻² mrad⁻² 0.1% bandwidth (BW)⁻¹ at 9.7 keV. The bandwidth (0.19 eV) is about 1/70 times as wide (close to the Fourier transform limit) and the peak spectral brightness is 40 times higher than in self-amplified spontaneous emission (SASE), with substantial improvements in the stability of self-seeding and noticeably suppressed pedestal effects. We could reach an excellent self-seeding, The bandwidth of the 14.6 keV seeded FEL was 0.32 eV, and the peak brightness was 1.3 $\times 10^{35}$ photons s⁻¹ mm⁻² mrad⁻² 0.1% BW⁻¹. We show that the use of seeded FEL pulses with higher reproducibility and a cleaner spectrum results in serial femtosecond crystallography data of superior quality compared with data collected using SASE mode.


Nat. Photon. 15, 435 (2021)

Won Namkung

photonics

Two-color HX FEL pulse generation

PAL-XFEL Machine Performance

FEL position stability:	< 10 % of beam size
FEL power stability:	< 5 % rms
E-beam energy jitter:	< 0.015 %
E-beam arrival time jitter:	< 15 fs
FEL pulse energy:	> 3.18 mJ at 7.13 keV
FEL beam pulse duration:	20 ~ 30 fs (FWHM)
Saturated FEL:	up to 20.0 keV

- Lattice design used three bunch compressor configuration
- Machine stability is outstanding
- Self-seeding and two-color generation are very promising

PAL-XFEL Statistics

Annual Plan of Operation (Days)

	2017	2018	2019	2020	2021	2022
User Beam-time	120	140	160	170	180	190
Turn-on & Tuning	123	110	73	67	70	57
Machine Study			21	21	10	10
Maintenance	109	102	98	97	92	95

User Service

	Applied	Approved	Days of Service
2017	82	26	120
2018	84	45	140
2019	140	49	160
2020	118	51	170
2021	132	47	180
2022	131	53	190

WATER THERMODYNAMICS

Maxima in the thermodynamic response and correlation functions of deeply supercooled water

Kyung Hwan Kim,^{1*} Alexander Späh,^{1*} Harshad Pathak,¹ Fivos Perakis,¹ Daniel Mariedal RESEARCH Sangsoo Kim,3 J

WATER PHASES

Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure

Kyung Hwan Kim^{1,2}*, Katrin Amann-Winkel¹*, Nicolas Giovambattista^{3,4}, Alexander Späh¹, Fivos Perakis¹, Harshad Pathak¹, Mariorie Ladd Parada¹, Cheolhee Yang², Daniel Mariedahl¹ Tobias Eklund¹, Thomas. J. Lane^{5,6}, Seonju You², Sangmin Jeong², Matthew Weston¹, Jae Hyuk Lee⁷, Intae Eom⁷, Minseok Kim⁷, Jaeku Park⁷, Sae Hwan Chun⁷, Peter H. Poole⁸, Anders Nilsson¹

SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED SCIENCES AND ENGINEERING

Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films

Tadesse A. Assefa¹*, Yue Cao^{1†}, Soham Banerjee^{1,2}, Sungwon Kim³, Dongjin Kim³, Heemin Lee⁴, Sunam Kim⁵, Jae Hyuk Lee⁵, Sang-Youn Park⁵, Intae Eom⁵, Jaeku Park⁵, Daewoog Nam⁵, Sangsoo Kim⁵, Sae Hwan Chun⁵, Hyojung Hyun⁵, Kyung sook Kim⁵, Pavol Juhas⁶, Emil S. Bozin¹, Ming Lu⁷, Changyong Song⁴, Hyunjung Kim³, Simon J. L. Billinge^{1,2}, Ian K. Robinson^{1,8}*

SCIENCE ADVANCES | RESEARCH ARTICLE

MATERIALS SCIENCE

Subnanosecond phase transition dynamics in laser-shocked iron

H. Hwang¹, E. Galtier², H. Cynn³, I. Eom⁴, S. H. Chun⁴, Y. Bang¹, G. C. Hwang¹, J. Choi¹, T. Kim¹, M. Kong¹, S. Kwon¹, K. Kang¹, H. J. Lee², C. Park⁵, J. I. Lee⁵, Yongmoon Lee⁶, W. Yang⁶, S.-H. Shim⁷, T. Vogt⁸, Sangsoo Kim⁴, J. Park⁴, Sunam Kim⁴, D. Nam⁴, J. H. Lee⁴, H. T.-Y. Koo⁴, C.-C. Kao², T. Sekine^{6,9}, Yongjae Lee^{1,6}*

Article

Mapping the emergence of molecular vibrations mediating bond formation

ttps://doi.org/10.1038/s41586-02
eceived: 18 October 2019
ccepted: 16 April 2020
ublished online: 24 June 2020
Check for undates

D-2417-3 Jong Goo Kim^{12,3}, Shunsuke Nozawa^{4,5}, Hanui Kim^{12,3}, Eun Hyuk Choi^{12,3}, Tokushi Sato^{6,7} Tae Wu Kim^{12,3}, Kyung Hwan Kim⁸, Hosung Ki^{12,3}, Jungmin Kim^{12,3}, Minseo Choi^{12,3}, Yunbeom Lee^{12,3}, Jun Heo^{12,3}, Key Young Oang⁹, Kouhei Ichiyanagi⁴, Ryo Fukaya⁴, Jae Hyuk Lee¹⁰, Jaeku Park¹⁰, Intae Eom¹⁰, Sae Hwan Chun¹⁰, Sunam Kim¹⁰, Minseok Kim¹⁰, Tetsuo Katayama^{11,12}, Tadashi Togashi^{11,12}, Sigeki Owada^{11,12}, Makina Yabashi^{11,12}, Sang Jin Lee^{1,2,3} Seonggon Lee^{12,3}, Chi Woo Ahn^{12,3}, Doo-Sik Ahn^{12,3}, Jiwon Moon¹³, Seungjoo Choi¹⁴,

Joonghan Kim¹³, Taiha Joo⁸, Jeongho Kim¹⁴, Shin-ichi Adachi^{4,5} & Hyotcherl Ihee^{1,2,3}

Won Namkung

High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging

Do Hyung Cho,[▽] Zhou Shen,[▽] Yungok Ihm, Dae Han Wi, Chulho Jung, Daewoong Nam, Sangsoo Kim, Sang-Youn Park, Kyung Sook Kim, Daeho Sung, Heemin Lee, Jae-Yong Shin, Junha Hwang, Sung Yun Lee, Su Yong Lee, Sang Woo Han, Do Young Noh, N. Duane Loh,* and Changyong Song*

PHYSICAL REVIEW X 11, 031031 (2021)

Structural Evidence for Ultrafast Polarization Rotation in Ferroelectri Superlattice Nanodomains

Hyeon Jun Lee,¹ Youngjun Ahn,¹ Samuel D. Marks⁰,¹ Eric C. Landahl,² Shihao Zhuang,¹ N Matthew Dawber,³ Jun Young Lee,⁴ Tae Yeon Kim,⁴ Sanjith Unithrattil,⁴ Sae Hwan Chun⁶,⁵ Sun Sang-Yeon Park[®],⁵ Kyung Sook Kim,⁵ Sooheyong Lee,^{6,7} Ji Young Jo[®],⁴ Jiamian Hu[®],¹ and

Optical Kerr Effect of Liquid Acetonitrile Probed by Femtosecond Time-Resolved X-ray Liquidography

Hosung Ki,^V Seungjoo Choi,^V Jungmin Kim, Eun Hyuk Choi, Seonggon Lee, Yunbeom Lee, Kihwan Yoon, Chi Woo Ahn, Doo-Sik Ahn, Jae Hyuk Lee, Jaeku Park, Intae Eom, Minseok Kim, Sae Hwan Chun, Joonghan Kim, Hyotcherl Ihee,* and Jeongho Kim*

4	NA 1/14
. нуun ,	RA 1/2
	un a francia a
	namme
	COMMUNICATIONS
	COMMUNICATIONS

ARTICLE

https://doi.org/10.1038/s41467-021-25070-z OPEN

Filming ultrafast roaming-mediated isomerization of bismuth triiodide in solution

Eun Hyuk Choi ^{1,2}, Jong Goo Kim^{1,2}, Jungmin Kim^{1,2}, Hosung Ki^{1,2}, Yunbeom Lee^{1,2}, Seonggon Lee^{1,2}, Kihwan Yoon³, Joonghan Kim³, Jeongho Kim⁴ & Hyotcherl Ihee ^{1,2}

pubs.acs.org/NanoLett

Ultrafast Carrier-Lattice Interactions and Interlayer Modulations of Bi₂Se₃ by X-ray Free-Electron Laser Diffraction

Sungwon Kim, Youngsam Kim, Jaeseung Kim, Sungwook Choi, Kyuseok Yun, Dongjin Kim, Soo Yeon Lim, Sunam Kim, Sae Hwan Chun, Jaeku Park, Intae Eom, Kyung Sook Kim, Tae-Yeong Koo, Yunbo Ou, Ferhat Katmis, Haidan Wen, Anthony DiChiara, Donald A. Walko, Eric C. Landahl, Hyeonsik Cheong, Eunji Sim, Jagadeesh Moodera, and Hyunjung Kim*

PHYSICAL REVIEW LETTERS 127, 175003 (2021)

Investigation of Nonequilibrium Electronic Dynamics of Warm Dense Copper with Femtosecond X-Ray Absorption Spectroscopy

Jong-Won Lee[®],^{1,2,†,‡} Minju Kim[®],^{1,2,†} Gyeongbo Kang,^{1,2} Sam M. Vinko,^{3,4} Leejin Bae,⁵ Min Sang Cho[®],^{1,2} Hyun-Kyung Chung,⁶ Minseok Kim,⁷ Soonnam Kwon[®],⁷ Gyusang Lee,^{1,2} Chang Hee Nam,^{1,2} Sang Han Park[®],⁷ Jang Hyeob Sohn,² Seong Hyeok Yang,² Ulf Zastrau,⁸ and Byoung Ick Cho^{1,2,}

pubs.acs.org/JPCL

Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy

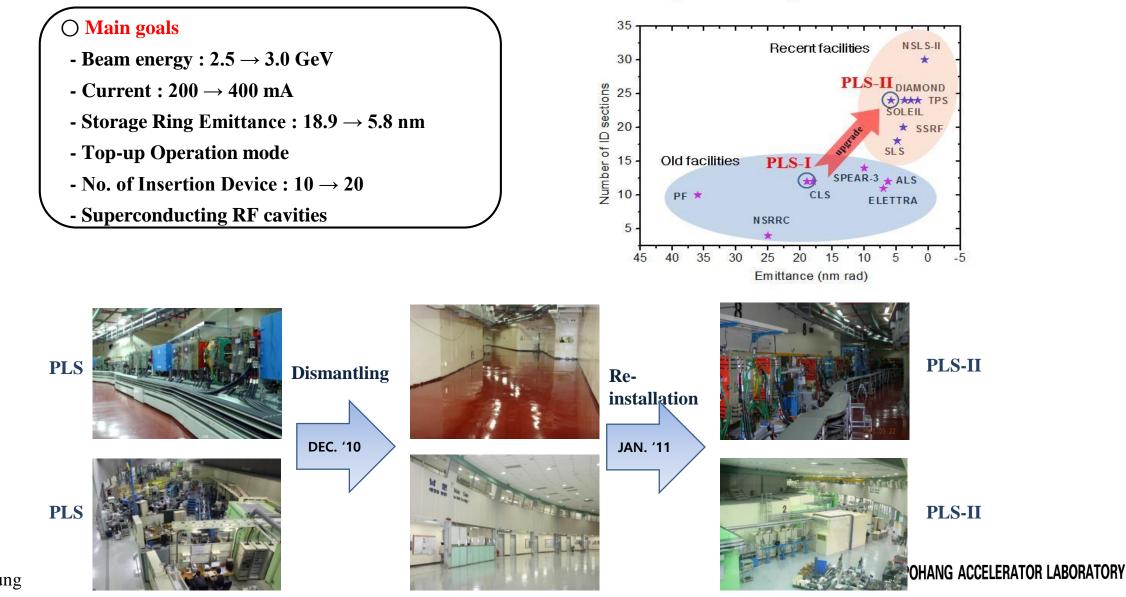
Letter

Yujin Kim,¹ Rory Ma,¹ Junho Lee,¹ Jessica Harich, Daewoong Nam, Sangsoo Kim, Minseok Kim, Miguel Ochmann, Intae Eom, Nils Huse,* Jae Hyuk Lee,* and Tae Kyu Kim*

PHYSICAL REVIEW X 12, 011013 (2022)

Check for update

Ultrafast Renormalization of the On-Site Coulomb Repulsion in a Cuprate Superconductor


Denitsa R. Baykusheva⁰,^{1,*} Hoyoung Jang⁰,² Ali A. Husain⁰,^{3,4,5} Sangjun Lee⁰,^{3,4} Sophia F. R. TenHuisen⁰,^{1,6} Preston Zhou,¹ Sunwook Park,^{7,8} Hoon Kim,^{7,8} Jin-Kwang Kim⁰,^{7,8} Hyeong-Do Kim⁰,² Minseok Kim,² Sang-Youn Park[®],² Peter Abbamonte[®],^{3,4} B. J. Kim,^{7,8} G. D. Gu,⁹ Yao Wang[®],^{10,†} and Matteo Mitrano^{®1,‡}

PLS-II

Energy upgrade: 2.5 => 3.0 GeV Top-up operation Normal conducting RF => Super conducting RF One year for user beam-time interruption

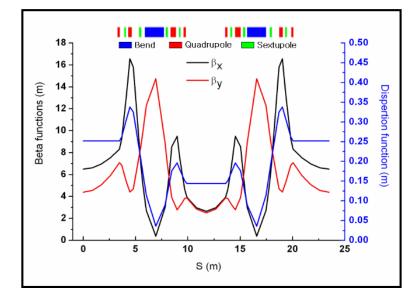
PLS-II Upgrade Storage Ring

The 3rd generation synchrotron facilities

Won Namkung

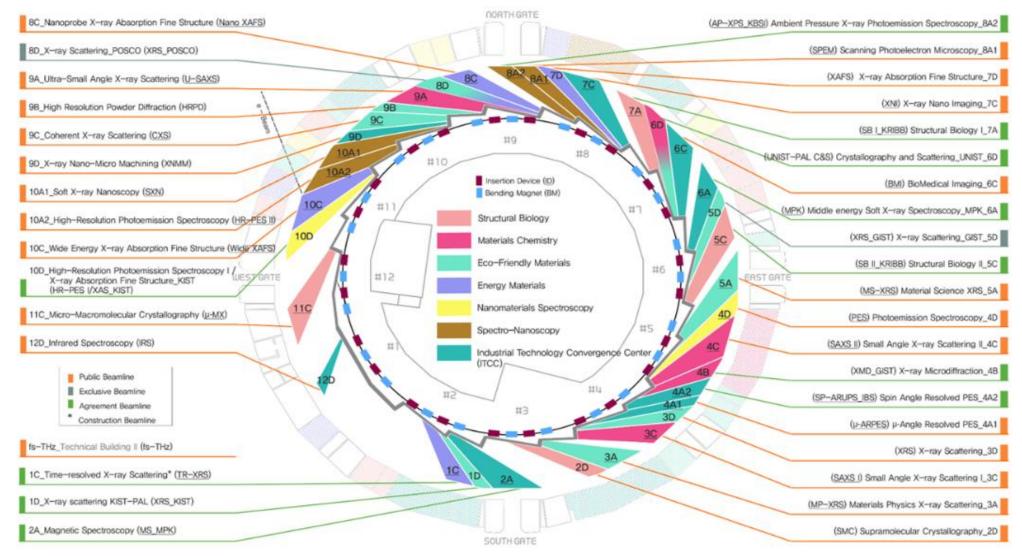
PLS-II Linac

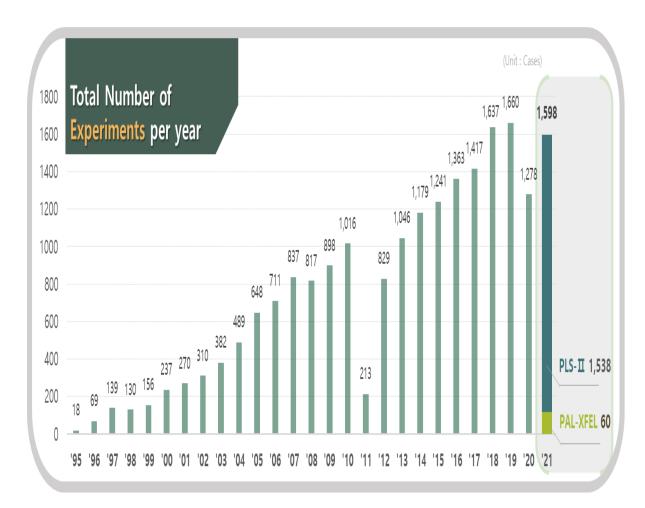
- Thermionic Electron Gun
- I7 Pulse Modulators (200MW, 7.5µs)
- 17 Klystrons (80 MW, 4µs)
- I6 Energy Doublers (gain=1.5)
- 46 Accelerating Sections

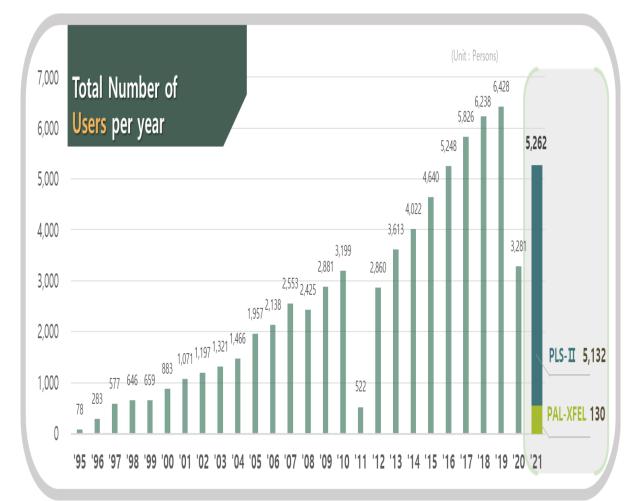

Injector LINAC

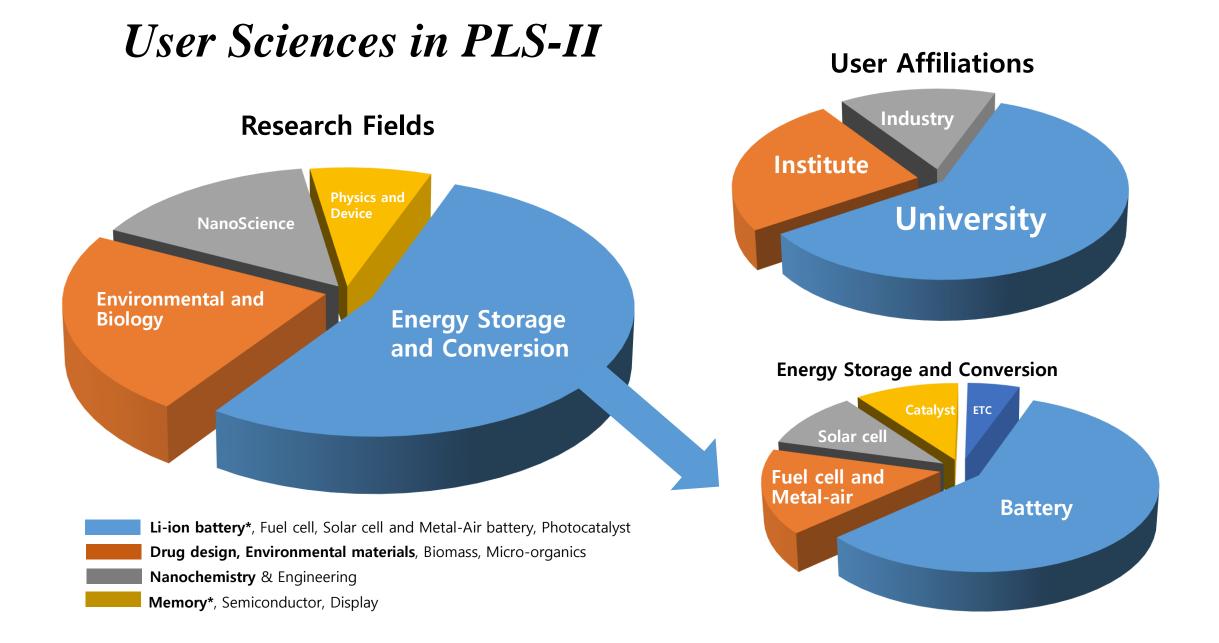
- Length = 170m
- 3.0 GeV, full energy injection
- 2,856 MHz (S-band)
- 10 Hz, 1.5 ns, 1Å pulsed beam
- Norm. emmittance: 150 µmrad

PLS-II Parameters


- Beam Energy 3.0 GeV
- Beam Current 400 mA
- Lattice DBA
- Superperiods 12
- Emittance 5.8 nm·rad
- Tune 15.37 / 9.15
- SRF Frequency 499.97 MHz
- Circumference 280 m


Won Namkung


36 Beam-lines at PLS-II



Number of Experiments and Users per Year

2020-2021 User Scientific Representative Achievements-I

nature

materials

oxide electrodes

materials

Li-ion Battery

NATURE MATERIALS | VOL 19 | APRIL 2020 | 419-427 | www.nature.com/naturematerials

Voltage decay and redox asymmetry mitigation by

reversible cation migration in lithium-rich lavered

Donggun Eum18, Byunghoon Kim128, Sung Joo Kim1, Hyeokjun Park1, Jinpeng Wu@34, Sung-Pyo Cho5,

Despite the high energy density of Bhine-rich layers devide selectodes, their rais-worf implementation in hatterins in his-density is unstantiative induces every except. This enlarge device is under y complete in analysis of picture in the proceeding of the selection of the se

 $\label{eq:constraint} \begin{array}{c} \mbox{the extent} i \mbox{the extent} i \mbox{the extended} i \mbox{the extendedd$

Gabin Yoon¹, Myeong Hwan Lee¹², Sung-Kyun Jung^{©16}, Wanli Yang^{©4}, Won Mo Seong¹, Kyojin Ku¹,

Orapa Tamwattana¹, Sung Kwan Park¹, Insang Hwang¹ and Kisuk Kang^{01,2,7}

ARTICLES

Focused on Energy conversion and storage Materials and Nanochemistry

Solar cell LETTER Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)

nature

Solar cell

nature

materials

R Check for updates

Stabilization of formamidinium lead triiodide α -phase with isopropylammonium chloride for perovskite solar cells

Byung-wook Park¹³, Hyoung Woo Kwon¹⁵, Yonghui Lee¹, Do Yoon Lee¹, Min Gyu Kim⁹², Geonhwa Kim[©]², Ki-jeong Kim², Young Ki Kim³, Jino Im[©]⁴, Tae Joo Shin[©]^{3 M} and Sang II Seok[©]^{1 M}

formamidinium lead triiodide (FAP6L) perovskite solar cells (PSCL) are mainly fabricated by sequentially coating lead iodide and formamidinium iodide, or by coating a solution in which all components are dissolved in one solvent (one-pot process). The XCS produced by both processes are bittle initial erificiancies however, their longer mutabilities were stubbili concluded that the major reason for this behaviour is the stabilization of the or-FAP6L, phase by icopropylammonium rations ed by the chemical reaction between isopropyl alcohol, used as solvent, and methylamn s. On this basis, we fabricated PSCs by adding isopropylammonium chloride to the per to process and achieved a certified power conversion efficiency of 23.5%. Long-term op ride to the perovskite preci one-pot process and achieved a certified power conversion efficiency of 22.9%. Long-term operational current density-owner measurements (one sweep every 84 min under 1-5an irradiation in mitrogen atmosphere) showed that the as-fabricated devices with an initial efficiency of approximately 20% recorded an efficiency of about 23% after 1,000h that gradually degraded to about 22% after a additional 1,000h.

Accepted: 22 June 2020

kished online: 9 September 2020

Memory device

A bioinspired and hierarchically structured shape-memory material

Luca Cera¹, Grant M. Gonzalez¹, Qihan Liu¹, Suji Choi¹, Christophe O. Chantre¹, Juncheol Lee², Rudy Gabardi¹, Myung Chul Choi², Kwanwoo Shin³ and Kevin Kit Parker[©]¹⊠

Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actua-tion mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and nory properties in response to hydration. We explore the metastable reconfiguration of the k ture, the transition from a-helix to B-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with pu cations in bioengineering and smart textiles

ARTICLES

Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H₂O₂ production

Electrocatalyst

Eulyeon Jung^{12,4}, Heejong Shin^{12,6}, Byoung-Hoon Lee^{12,6}, Vladimir Efremov³, Subyeong Lee³, Hyeon Seok Leet2, Jiheon Kim12, Wytse Hooch Antink12, Subin Park12, Kug-Seung Lee 4, Sung-Pyo Cho⁵, Jong Suk Yoo^{3*}, Yung-Eun Sung^{12*} and Taeghwan Hyeon^{312*}

Despite the growing demond for hydrogen prevaids It is already cataloxies multiclaned by the energy-intensive atthespit none process. Moreotherity, KG, and the produced form the cataloxies prevaids and the second iltrogen-doped graphene for H₂O₂ production and exhibits a kinetic current density of 2.8 mA cm⁻¹ (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 Ag⁻¹ (at 0.65 V versus the reversible hydrogen electrode) with negligible

pdegan porticle (0,0,) is one of the not important plottern for making the cooperative interaction between medial constraints in a ployer i studie and in the domain and or manusching metal configurations?" We argue the north domain of the maximum plotter in the domain and the manusching metal configurations? We argue the north domain of the mathematic plotter is the domain of a double dimension of a double dimension of a double dimension of the domain of th

nature **Nanochemistry**

Design and synthesis of multigrain nanocrystals via geometric misfit strain

Myoung Hwan Oh^{133,4,40}, Min Gee Cho^{13,43}, Dong Young Chung¹³, Inchui Park¹⁸, Ioungwook Paul Kiwon², Colin Ophua¹, Dokyoon Kim^{13,2}, Min Oyu Kim¹⁰, Beomysru Jee C. Wendy Gu², Jimesung Je¹³, Ji Main Yoo¹³, Janyoung Hong²¹, Sara McMains², Kisuk Ki Jang-Lain Sung¹, A. Paul Alivisato^{14,414} & Tanghwan Hyoon¹³¹⁴ Received: 15 June 2018 Accepted: 30 October 20 lished online: 15 January 2021

> he impact of topological defects associated with grain boundaries (GB defects) (the electrical, optical, magnetic, mechanical and chemical properties of anocrystalline materials¹² is well known. However, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes. shapes and random relative orientations³⁻⁴. Here we demonstrate that precise co of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We illustrate our approach with a multigrain nanocrystal comprising a Co.O, nanocube core that carries a Mn₃O₄ shell on each facet. The individual shells are symmetryrelated interconnected grains6, and the large geometric misflt between adjacent tetragonal Mn_jO_a grains results in tilt boundaries at the sharp edges of the Co_jO_a nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the wergrowth phase². Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry tween the overgrowth phase and the substrate increases the geometric misfit stra between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation⁸⁻³⁰. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects

Nanochemistry & Catalyst

Song et al., Science 367, 777-781 (2020) 14 February 2020 CATALYSIS

Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO

Youngdong Song^L, Ercan Ozdemir^{2,3}, Sreerangappa Ramesh², Aldiar Adishev² inan Subramanian², Aadesh Harale⁴, Mohammed Albuali⁴, Bandar Abdullah Fadhel^{4,5}, Anil Jamal^{4,5} Dohuun Moon⁶, Sun Hee Choi⁶, Cafer T, Yayuz^{1,2}

Large-scale carbon fination requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized a the edges of a single crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous peration under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show on sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crustals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the "Nanocatalysts On Single Crystal Edges" technique could lead to stable catalyst designs for many challenging reactions.

Electrocatalyst

RTICLES	nature		
95://601.org/10.1038/541929-021-00578-1	catalysis		
	Check for update		

Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation

Jian Wang 12, Se-Jun Kim², Jiapeng Liu³, Yang Gao⁴, Subin Choi¹, Jeongwoo Han¹, Hyeyoung Shin⁹⁵, Sugeun Jo¹, Juwon Kim¹, Francesco Ciucci⁹³⁶, Hwiho Kim¹, Qingtian Li⁷, Wanli Yang[©]⁷, Xia Long⁸, Shihe Yang⁸[⊠], Sung-Pyo Cho⁹, Keun Hwa Chae[®]¹⁰, Min Gyu Kim[®]¹⁰, Hyungjun Kim^{©2}[™] and Jongwoo Lim^{©1™}

Rationally manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly Retright the state of the stat (OER). Chlorine doping lowered the potential to trigger in situ cobait oxidation and lithium leaching, which induced the surface of LiCoO₄₄Cl₀₄₂ to transform into a self-terminated amorphous (oxy)hydroxide phase during the OER. In contrast, CI-free LiCoO₅ required higher electrochemical potentials to initiate the isitu surface reconstruction to spinel-type Li₁₀,Co,Q₄ and longe cycles to stabilize it. Surface-restructured LICoO₄Cl_{0,2} outperformed many state-of-the-art OER catalysts and demonstrate emarkable stability. This work makes a stride in modulating surface restructuring and in designing superior OER electrocata lysts via manipulating the in situ catalyst leaching.

Electrocatalyst

nature catalysis

Article Published: 29 June 2020

Selective electrocatalysis imparted by metal-insulator transition for durability enhancement of automotive fuel cells

Sang-Mun Jung, Su-Won Yun, Jun-Hyuk Kim, Sang-Hoon You, Jinheon Park, Seonggyu Lee, Seo Hyoung Chang, Seung Chul Chae, Sang Hoon Joo, Yousung Jung, Jinwoo Lee, Junwoo Son, Joshua Snyder, Vojislav Stamenkovic, Nenad M. Markovic & Yong Tae Kim 🖻

Nature Catalysis 3, 639-648(2020) Cite this article

Electrocatalyst

nature catalysis

Article | Published: 17 February 2020

Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts

Hojin Jeong, Ohmin Kwon, Beom Sik Kim, Junemin Bae, Sangyong Shin, Hee Eun Kim, Jihan Kim & Hyunjoo Lee 🖂

Nature Catalysis 3, 368-375(2020) Cite this article

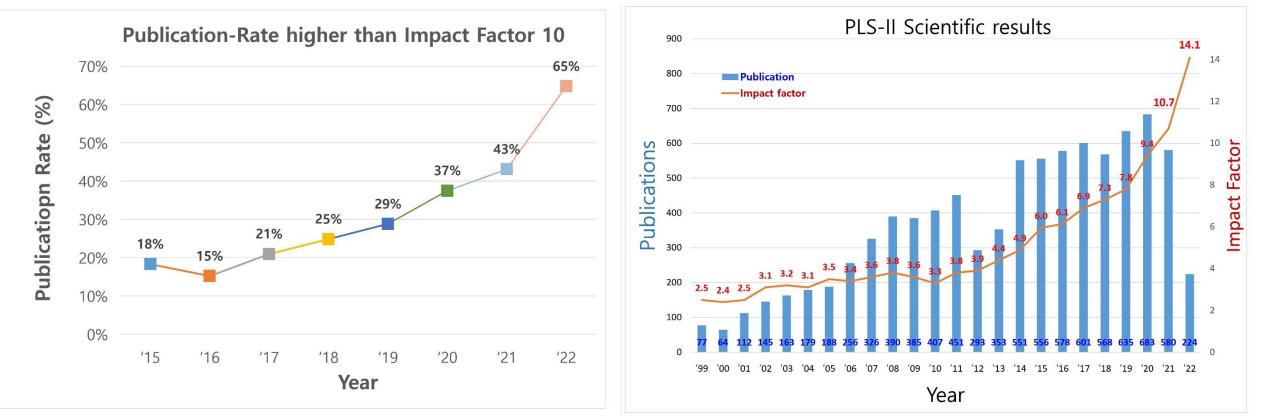
nature Semiconductor

Article

Ultralow-dielectric-constant amorphous boron nitride

https://doi.org/10.1038/s41586-020-2375-9 Seokmo Hong¹, Chang-Seok Lee², Min-Hyun Lee², Yeongdong Lee^{3,4}, Kyung Yeol Ma Gwangwoo Kim¹, Seong In Yoon¹³, Kyuwook Ihm⁶, Ki-Jeong Kim⁶, Tae Joo Shin Sang Won Kim¹, Eur-chae Jeon¹, Hansol Jeon¹, Ju-Young Kim¹, Hyung-Ik Lee¹, Zonghoon Lee¹⁴, Aleandro Antidormi¹⁰, Stephan Roche⁰³¹, Manish Chhowalla¹ Received: 16 November 2019 Accepted: 25 March 2020 Iveon-Jin Shin² & Hyeon Suk Shin' ublished online: 24 June 2020 Check for updates

Decrease in processing speed due to increased resistance and capacitance delay is major obstacle for the down-scaling of electronics1-3. Minimizing the dimensions of interconnects (metal wires that connect different electronic co inents on a chin) crucial for the miniaturization of devices. Interconnects are isolated from each othe by non-conducting (dielectric) layers. So far, research has mostly focused on decreasing the resistance of scaled interconnects because integration of dielectrics using low-temperature deposition processes compatible with complementary metal-oxide-semiconductors is technically challenging. Interconnect isolation materials must have low relative dielectric constants (κ values), serve as diffusion barriers against the migration of metal into semiconductors, and be thermally, chemically and mechanically stable. Specifically, the International Roadmap for Devices and Systems recommends* the development of dielectrics with a values of less

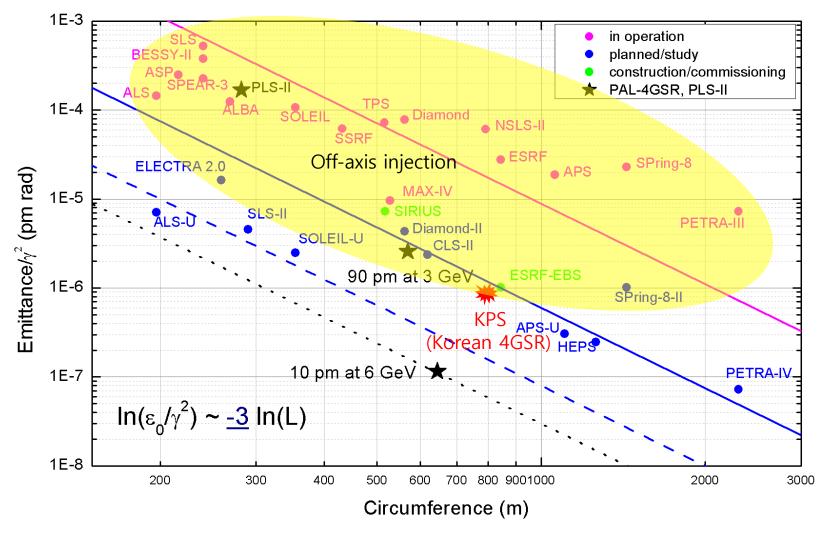


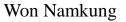
https://doi.org/10.1031 Ryong Ryon⁽²¹⁾, Jaohoon Kim¹, Changbum Jo¹³, Seurg Won Han¹², Jeong-Chul Ki Honglun Park¹², Jongho Han¹², Hye Sun Shin¹²⁺& Jae Won Shin¹ ceived: 1 October 2015

> with other metals to improve catalytic activity, selectivity and longevity1 5 Such catalysts are usually organized in the form of metallic nanoparticles supported or porous solids, and their production involves reclacing metal prezursor compo ander a H₂ flow at high temperatures". The method works well when using easil educible late transition metals, but Pt alloy formation with rare-earth element through the H₁ reduction route is almost impossible owing to the low chemical ential of rare-earth element oxides*. Here we use as support a mesoporous zeo that has pore walls with surface framework defects (called 'silanol nests') and show that the evolute enables alloy formation between P1 and rare-earth elements. We fin that the silanoi nests enable the rare-earth elements to exist as single atomic speciwith a substantially higher chemical potential compared with that of the bulk oxide making it possible for them to diffuse onto Pt. High-resolution transmission electro conv and hydrogen chemisoration measurements indicate that the resultan bimetallic nanoparticles supported on the mesoporous zeolite are intermetalli compounds, which we find to be stable, highly active and selective catalysis for propane dehydrogenation reaction. When used with late transition metals, the eparation strategy produces Pt alloy catalysts that incorporate an unu ount of the second metal and in the case of the PtCo allow show high catalyt 26 ctivity and selectivity in the neeffect atial oxidation of carbon-

2022 User Scientific General Achievements-II

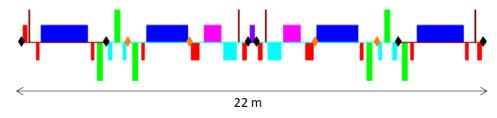
An increasing trend of Impact factor Constant SCI Publications

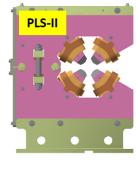



KPS (Korea Photon Source)

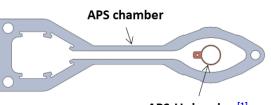
Users are increasing Available Beam-lines are limited at 36 High-performance beams are in demand There is no space left at PAL

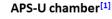
3rd and 4th Generation Light Sources

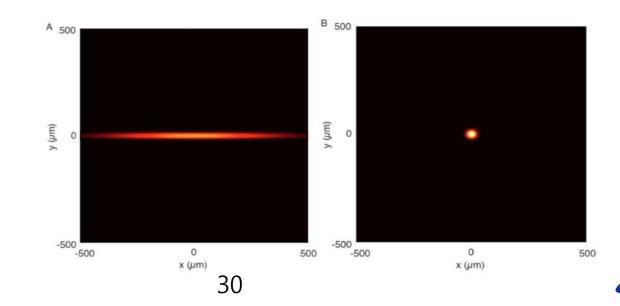


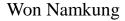

3GSR vs. 4GSR (with challenging technology)

The 3rd Generation Storage Ring Lattice:

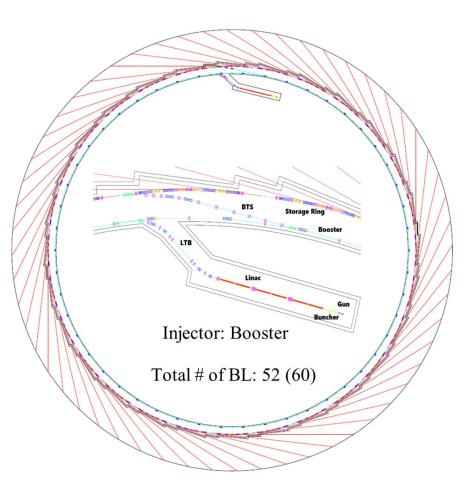



• The 4th Generation Storage Ring Lattice:





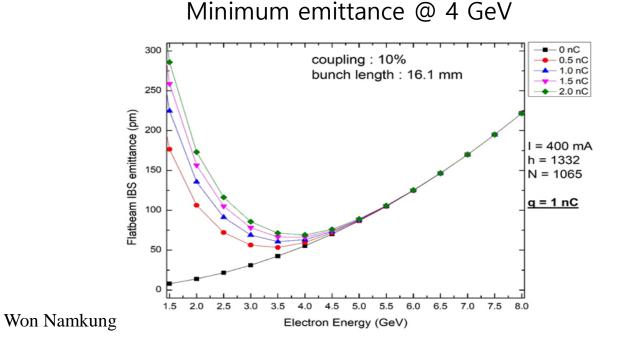
POHANG ACCELERATOR LABORATORY

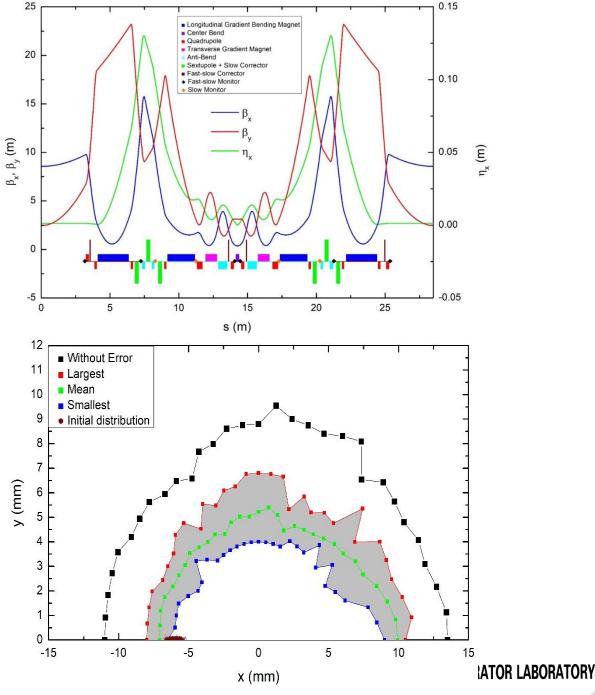

Korea Photon Source (KPS) Project

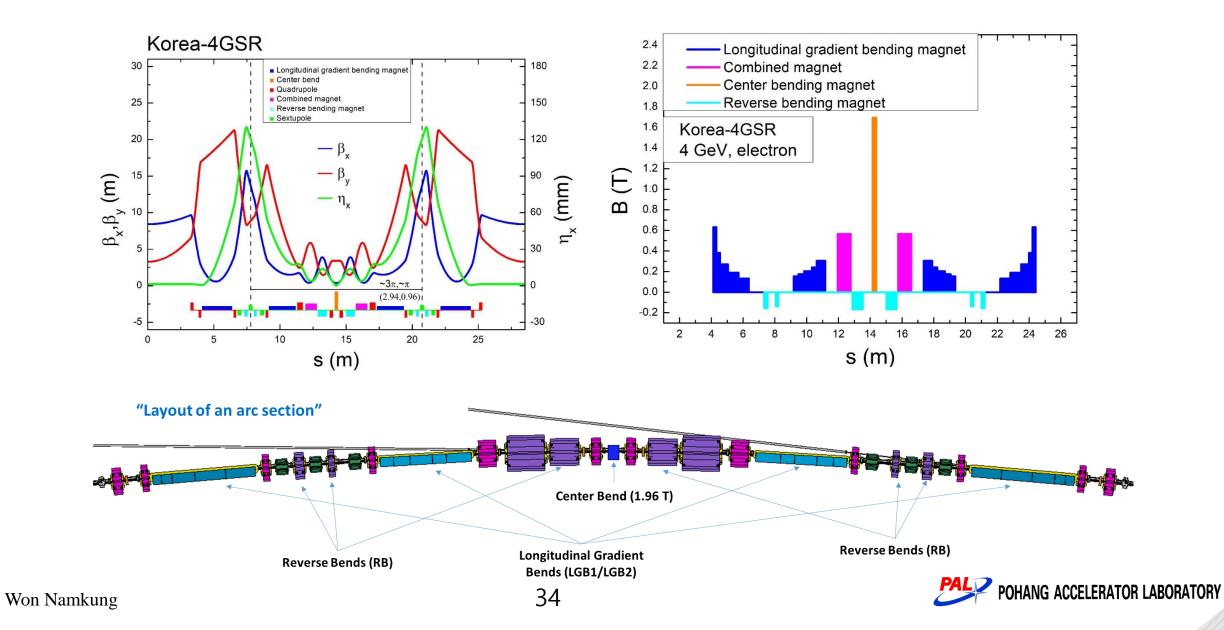
- Preliminary study by PAL: 2017 ~ 2019
- CDR project: 2020
- Project start: 2021. 7 ~ 2027. 12
- Building by KBSI / Machine by PAL

Parameter	Units	PLS-II	Korean 4GSR
Electron energy	GeV	3	4
Horiz. Emittance	pm	5,800	58 (RB: 39)
Vert. Emittance	pm	~ 58	~ 5.8 (RB: 39)
Bunch length (rms)	ps	20	13 (50 with HC)
Circumference	m	280	800
Harmonic #		470	1332
RF frequency	MHz	500	500
Beam stability @ ID (x/y)	μm	< 4 / 2	< 2.5 / 0.45
Injection mode		Top-up	Top-up

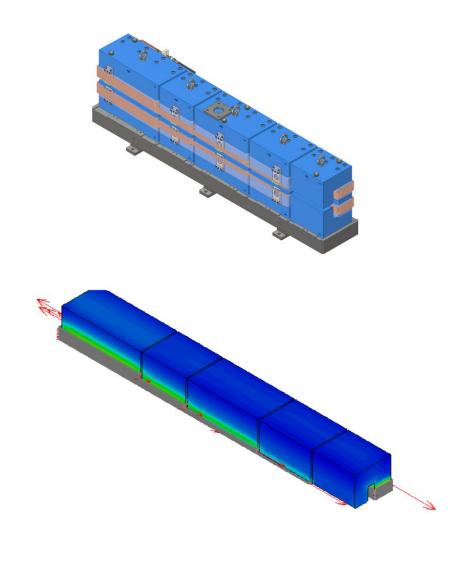
Major Parameters for KPS

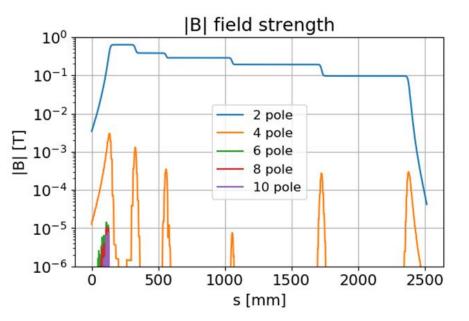

4GSR Ring				Unit
		Cell Number	28	-
	Design Parameters	Circumference	798.84	[m]
	Design Parameters	Electron Energy	4	[GeV]
		Natural Emittance	58	[pm rad]
		Horizontal Tune	67.395	-
		Vertical Tune	24.275	-
		Natural Horizontal	-115.344	
	Tune and Chromaticiy	Chromaticity	-115.544	-
	rune and Chromaticiy	Natural Vertical	-84.693	-
		Chromaticity	-04.095	
		Horizontal Chromaticity	3.5	(target)
		Vertical Chromaticity	3.5	(target)
		Energy Loss per Turn	1009	[keV]
		Energy Spread	0.1197	[%]
Radiat	Radiation related quantities	Horizontal Damping Time	11.075	[ms]
		Vertical Damping Time	21.127	[ms]
		Longitudinal Damping Time	19.342	[ms]
		Horizontal beta function at the ID center	8.564	[m]
	Twiss functions at the ID	Vertical beta function at the ID center	2.459	[m]
Won Namkung		Dispersion function at the ID center	1332	[mm]




SR Lattice Structure (linear)

- 1. Natural evolution of ESRF-EBS and APS-U
- 2. ESRF-EBS type
 - Dispersion bump w/sextupoles.
 - Longitudinal gradient dipoles.
 - Phase advance of $\Delta \phi_x \sim 3\pi$ and $\Delta \phi_y \sim \pi$ between corresponding sextupole
- 3. APS-U type: Reverse bends in Q4, Q5, and Q8.
- 4. Massive use of combined function magnets
- 5. 6.5 m straight section and 2 T center-bend ($E_c=21$ keV)




Hybrid 7-bend Achromat

Longitudinal Gradient Bending Magnet (LGBM)

Dipole and higher order multipole along the orbit.

- EM version is selected for construction costs and total cost of operation during the lifetime.
- 3D field map with 1mm step size is calculated, and the multipole along the orbit is calculated.
- Except the quadrupole component which comes from the edge focusing, higher order was negligible.
- To match the design field, reluctance gap at the return yoke is implemented for each magnet section POHANG ACCELERATOR LABORATORY

35

Design Features

- ***** High photon beam performance from storage ring.
 - The best performance in the range of 10 ~ 40 keV.
 - Capability to generate photon beam up to 100 keV.
- * Considering well demonstrated technologies for the design.
 - Off axis injection with conventional injection scheme
 - General technologies for magnet and vacuum systems.
- ***** Synergy with PLS-II and PAL-XFEL.
 - Supporting full range of synchrotron radiation application.



Initial Beam-lines (10 units)

Beam-line	Beam Energy	Resolution	Source	Experimental Technique
1 BioPharma-BioSAXS	5~20 keV	SAXS: < 1 Å ΔΕ/Ε < 10 ⁻⁴	IVU	1 Bio-SAXS
② Material Structure Analysis	5~40 keV	$\Delta E/E < 10^{-4}$	Undulator	 XRD XAFS
③ Soft X-ray Nano-probe	0.1~5.0 keV	sub-micro beam ΔE/E>1.5×10 ⁻⁴ @1keV	EPU	 XAS XPS
(4) Nanoscale Angle-resolved Photoemission	0.1~2 keV	< 100 nm ΔΕ/Ε < 10 ⁻⁴	Undulator	1 Nano-ARPES
(5) Coherent X-ray Diffraction	3~30 keV	sub-micro beam	Undulator	 XRD CDI
Coherent Small-angle X-ray Scattering	4~40 keV	few nm ~ few μm ΔE/E < 2×10 ⁻⁴	IVU	 SAXS/WAXS XPCS
⑦ Real-time X-ray Absorption Fine Structure	5~40 keV	Few µm	Undulator	1 XAFS
(8) Bio Nano crystallography	5~20 keV	<1 Å	IVU	1 MX
(9) High Energy Microscopy	5 ~ 100 keV	resolution 0.1µm	Superbend	1 Projection imaging
10 Nano-probe	5~25 keV	< 50nm 1~10 μm	IVU	 1 Ptychography/XRF 2 XRS

Site Arrangement (Plan)

Summary

- A few visionary people initiated light source facility in Korea in late 1980s.
- Successful constructions and user services at PAL have been recognized
- There are more accelerator projects being undertaken recently.
- The users' quality is continuously improved, and we expect more impact results.
- We need more technological development for effective domestic maintenance capability, for example, high-power klystrons, superconducting cavities, and cryogenic facilities.

Acknowledgements

Thanks to

C. B. Kim: PAL-XFEL I. T. Uom: PAL-XFEL S. H. Shin: PLS-II M. K. Kim: PLS-II K. W. Kim: PAL I. S. Ko: KPS

for their contribution

POHANG ACCELERATOR LABORATORY

First Publication by First User

18 August 2017

Draft Manuscript: Confidential

Title: <u>Maxima in the Thermodynamic Response and Correlation Functions of Deeply</u> <u>Supercooled Water</u>

Authors: Kyung Hwan Kim^{1†}, Alexander Späh^{1†}, Harshad Pathak¹, Fivos Perakis¹, Daniel Mariedahl¹, Katrin Amann-Winkel¹, Jonas A. Sellberg², Jae Hyuk Lee³, Sangsoo Kim³, Jaehyun Park³, KiHyun Nam³, Tetsuo Katayama⁴, and Anders Nilsson^{1.*}

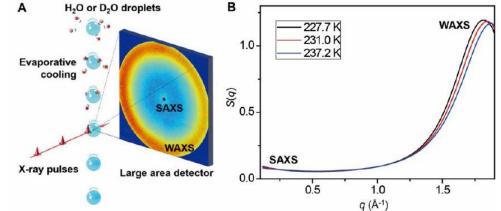
Affiliations:

¹Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden

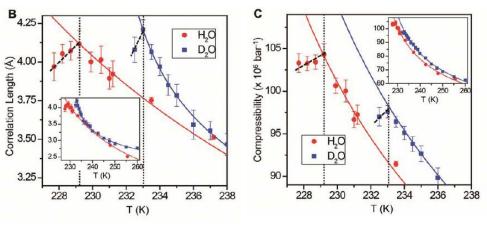
²Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center,

KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden

³Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea


⁴Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan

*Corresponding author. E-mail: <u>andersn@fysik.su.se</u> [†]These authors equally contributed to this work.


Abstract:

Won Namkun

Femtosecond x-ray laser pulses were used to probe micron-sized water droplets cooled down to 227 K. From the x-ray scattering at the low momentum transfer region the isothermal compressibility and correlation length were extracted and the temperature dependence shows maxima at 229 K for H₂O and 233 K for D₂O. In addition, from the first diffraction peak it was observed that the liquid undergoes the most rapid growth of tetrahedral structures at similar temperatures. These observations point to the existence of a Widom line, defined as the locus of maximum correlation length emanating from a critical point at positive pressures deeply in the supercooled regime. The difference in maximum value of the isothermal compressibility between 2 the two isotopes shows the importance of nuclear quantum effects.

Confirmation of the Existence of the Widom Line !

Science (Dec. 21, 2017) POHANG ACCELERATOR LABORATORY