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Inflation

@ numerous hints that the universe underwent accelerated expansion

@ at the end of the inflationary phase: particles produced in

“reheating”
underlying microphysics of both processes unknown
if all relevant physics can be parameterised in one scalar dof ¢

@ constraints on potential V (¢) during inflation. . .
@ ...but very little known about potential near minimum

even in simple models it is a demanding task to model the details
of the reheating process
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Reheating

@ early phase is a highly complicated far-from-equilibrium process
that can yield interesting relics. . .

@ .. .but temperature Tr at onset of radiation dominated era may be
determined by late phase
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Reheating

@ early phase is a highly complicated far-from-equilibrium process
that can yield interesting relics. . .

@ .. .but temperature Tr at onset of radiation dominated era may be
determined by late phase

@ several simplifications

@ decay products thermalise on time scales <« 1/I'

@ ¢ is the only far-from-equilibrium dof, it dissipates in a thermal bath
with slowly (~ 1/T', 1/H) changing temperature T

V (¢) during oscillatinos near minimum approximately harmonic
effective masses are dominated by “thermal masses”

dissipation via perturbative processes (e.g. decay)

¢ © ¢

= relaxation of a scalar that is (very) weakly coupled to a thermal
bath
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An upper Bound on Tgr?

@ dispersion relations of particles in a plasma are modified
(“screening”)

@ simplest case: modifications can be parameterised by replacing
intrinsic masses m by thermal masses M(T)

@ it has been suggested that the decay ¢ — x1x2 (or similar
¢ — xxx etc) is kinematically forbidden for ), Mi(T) > My(T)
= plasma cannot be heated to temperatures larger than T, with
Zi Mi(Te) = M¢(TC)! Kolb/Notari/Riotto 2003

@ ¢ is very weakly coupled

] Md,(T) My > M;
@ thermal masses M;(T) determined by stronger interactions in the
bath

= T, does not depend on the inflaton coupling!
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@ argument is based on single particle kinematics

@ s this valid in a dense nonequilibrium plasma?

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?
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© definition of asymptotic states in the omnipresent plasma?

© when can modified dispersion relations be parameterised by
thermal masses?

© gauge theories: gauge independent results require inclusion of
processes that naivlely are of higher order - how does that accord
with use of single particle distribution functions?

© inter particle distance ~ Compton wavelength?
© memory effects?

© quantum coherence, interference?
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Particles and Fields

@ above problems arise if we insist to describe the system as a
collection of individual (on-shell/classical) particles

@ this is not always suitable (e.g. QCD near crossover, classical
fields,...)

@ itis also not necessary - we are interested in overall relaxation of
the system
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Particles and Fields

@ above problems arise if we insist to describe the system as a
collection of individual (on-shell/classical) particles

@ this is not always suitable (e.g. QCD near crossover, classical
fields,...)

@ itis also not necessary - we are interested in overall relaxation of
the system

Schwinger-Keldysh Formalism

Any quantum system can be described by correlation functions.
@ no reference to asymptotic states and particles needed
@ no trouble with “real intermediate state subtraction” etc

@ allows to compute all observables at all times
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Equations of Motion

equations of motion form system of coulped 2nd order
integro-differential equations of several variables that can only be
solved numerically (Kadanoff-Baym equations). . .

... but for the weak coupling to a thermal bath formal analytic
solutions can be found for bosons and fermions!
Anisimov/Buchmuller/MaD/Mendizabal 2008,2010; MaD 2010

weak coupling of ¢ allows to obtain explicit analytic expression

@ no coherence effects on timescales 1/’
@ no memory (¢: can be integrated, bath: erased by fast interactions)
@ but non-trivial kinematic effects

allow to compute energy per mode as
eq(t) = 2 (0,0, + w?) (A (t1,t2) + (g (t1))(bq(t2))) lymtot
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(O1+m?)A™(xg, %) = /d dt” (x1,X")A7 (X", X2)
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tz
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Spectrum of Excitations

important quantity: spectral densities p; of bath constituents
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Spectrum of Excitations

important quantity: spectral densities p; of bath constituents
@ if p; features narrow peaks:

@ can be interpreted as quasiparticle with dispersion relation w = Q;
and width I; given by Re and Im of poles

@ energy transfer between field modes happens via approximately
energy conserving decays and scatterings of quasiparticles
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Spectrum of Excitations

important quantity: spectral densities p; of bath constituents
@ if p; features narrow peaks:

@ can be interpreted as quasiparticle with dispersion relation w = Q;
and width I; given by Re and Im of poles

@ energy transfer between field modes happens via approximately
energy conserving decays and scatterings of quasiparticles

@ broad resonances: no (quasi)particle interpretation, no simple
kinematic arguments apply

=- need fully dressed spectral densities
in the medium
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consider diagrams of the type 0 O
in ¢-self-energy (=collision term) O )

@ optical theorem relates resummed self energies to multiparticle
amplitudes weldon 1983; Landshoff 1996; Bedaque/Das/Naik 1997

@ in medium additional amplitudes involving bath quanta contribute

@ widths I'; parameterise the effect of multi-particle scatterings,
including off-shell contributions and interferences

= resummed perturbation theory can be employed
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The Physical Picture

in a dense medium (multiple) scatterings contribute to the
dissipation rate (“Landau damping”)

Schwinger-Keldysh formalism and resummed perturbation theory
allow a consistent first principles computation, including
interferences and without reference to asymptotic states

processes involving many quanta may contribute at same order as
naively leading terms because

@ additional vertex suppression compensated by large occupation
numbers

@ quanta in soft, collinear “bremsstrahlung” are almost on-shell

@ amplification due to induced transitions

their contribution may be parameterised by widths of resonances in
the plasma

for broad resonances: no simple arguments in terms of single
particle kinematics hold

171723



Quasiparticle Regime

@ narrow resonances: energy exchange between field modes can be
viewed as approximately energy conserving decays and
scatterings of quasiparticles

@ leading order:

@ 3-vertices:

@ 4-vertices:

-~ N PN

N - ~ \/ \/
Lo 5 el oy ~ e
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N~ - ~
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= even at leading order decay is not the only process!

@ small apparent violation of energy conservation is due to multiple
scatterings encoded in quasiparticle widths, it may have
considerable effects
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3-Vertex ¢yixe, [i/Mij ~ 1072

(a) on-shell decay ¢ < x1x2 + higher order
(b) on-shell absorbtion ¢x; < x2 + higher order
(c) off-shell only
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3-Vertex ¢yixe, [i/Mij ~ 1072

(a) on-shell decay ¢ < x1x2 + higher order
(b) on-shell absorbtion ¢x; < x2 + higher order
(c) off-shell only
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Example |: Upper Bound T, by Thermal
Masses
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Example Il: Heating for

Processes

T > T, by Off-Shell

50 100

2

B/an, =

21/23



Example Ill: Heating for T > T, by Scatterings
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Conclusions

@ Medium related modifications of the dispersion relations in the
primordial plasma can affect the thermal history during reheating. ..

@ ... but only in special cases thermal masses allow to impose an
upper bound on the temberature if

o effective masses are dominated by thermal masses (not coupling to
(&)

@ resonances in the plasma have a sufficiently narrow width to
suppress off-shell dissipation (quasiparticle description)

@ there are no other channels of dissipation (scatterings, Laundau
damping...)
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