Marco Drewes École Polytechnique Fédérale de Lausanne

based on arXiv:1012.5380 [hep-th]

18.4.2011 at PONT meeting in Avignon

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE

Inflation

- numerous hints that the universe underwent accelerated expansion
- at the end of the inflationary phase: particles produced in "reheating"
- underlying microphysics of both processes unknown
- if all relevant physics can be parameterised in one scalar dof ϕ
 - constraints on potential $V(\phi)$ during inflation...
 - ...but very little known about potential near minimum
- even in simple models it is a demanding task to model the details of the reheating process

Reheating

- early phase is a highly complicated far-from-equilibrium process that can yield interesting relics...
- ...but temperature T_R at onset of radiation dominated era may be determined by late phase

Reheating

- early phase is a highly complicated far-from-equilibrium process that can yield interesting relics...
- ...but temperature T_R at onset of radiation dominated era may be determined by late phase
- several simplifications
 - decay products thermalise on time scales $\ll 1/\Gamma$
 - ϕ is the only far-from-equilibrium dof, it dissipates in a thermal bath with slowly ($\sim 1/\Gamma, 1/H$) changing temperature *T*
 - $V(\phi)$ during oscillatinos near minimum approximately harmonic
 - effective masses are dominated by "thermal masses"
 - dissipation via perturbative processes (e.g. decay)

\Rightarrow relaxation of a scalar that is (very) weakly coupled to a thermal bath

An upper Bound on T_R ?

- dispersion relations of particles in a plasma are modified ("screening")
- simplest case: modifications can be parameterised by replacing intrinsic masses *m* by thermal masses *M*(*T*)
- it has been suggested that the decay $\phi \to \chi_1 \chi_2$ (or similar $\phi \to \chi \chi \chi$ etc) is kinematically forbidden for $\sum_i M_i(T) > M_{\phi}(T)$ \Rightarrow plasma cannot be heated to temperatures larger than T_c with $\sum_i M_i(T_c) = M_{\phi}(T_c)!$ Kolb/Notari/Riotto 2003
- ϕ is very weakly coupled
 - $M_{\phi}(T) \approx m_{\phi} \gg m_i$
 - thermal masses M_i(T) determined by stronger interactions in the bath
 - \Rightarrow T_c does not depend on the inflaton coupling!

- argument is based on single particle kinematics
- is this valid in a dense nonequilibrium plasma?

- definition of asymptotic states in the omnipresent plasma?
- when can modified dispersion relations be parameterised by thermal masses?
- gauge theories: gauge independent results require inclusion of processes that naivlely are of higher order - how does that accord with use of single particle distribution functions?
- inter particle distance \sim Compton wavelength?
- memory effects?
- o quantum coherence, interference?

Particles and Fields

- above problems arise if we *insist* to describe the system as a collection of individual (on-shell/classical) particles
- this is not always suitable (e.g. QCD near crossover, classical fields,...)
- it is also not necessary we are interested in overall relaxation of the system

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?

Particles and Fields

- above problems arise if we *insist* to describe the system as a collection of individual (on-shell/classical) particles
- this is not always suitable (e.g. QCD near crossover, classical fields,...)
- it is also not necessary we are interested in overall relaxation of the system

Schwinger-Keldysh Formalism

Any quantum system can be described by correlation functions.

- no reference to asymptotic states and particles needed
- no trouble with "real intermediate state subtraction" etc
- allows to compute all observables at all times

Equations of Motion

- equations of motion form system of coulped 2nd order integro-differential equations of several variables that can only be solved numerically (Kadanoff-Baym equations)...
- ... but for the weak coupling to a thermal bath formal analytic solutions can be found for bosons and fermions!
 Anisimov/Buchmüller/MaD/Mendizabal 2008,2010; MaD 2010
- weak coupling of ϕ allows to obtain explicit analytic expression
 - no coherence effects on timescales 1/Γ
 - no memory (φ: can be integrated, bath: erased by fast interactions)
 - but non-trivial kinematic effects
- allow to compute energy per mode as $\epsilon^{\phi}_{\mathbf{q}}(t) = \frac{1}{2} \left(\partial_{t_1} \partial_{t_2} + \omega^2_{\mathbf{q}} \right) \left(\Delta^+_{\mathbf{q}}(t_1, t_2) + \langle \phi_{\mathbf{q}}(t_1) \rangle \langle \phi_{\mathbf{q}}(t_2) \rangle \right) \Big|_{t_1 = t_2 = t}$

$$(\Box_1 + m^2) \Delta^-(x_1, x_2) = -\int d^3 \mathbf{x}' \int_{t_2}^{t_1} dt' \Pi^-(x_1, x') \Delta^-(x', x_2) , (\Box_1 + m^2) \Delta^+(x_1, x_2) = -\int d^3 \mathbf{x}' \int_{t_i}^{t_1} dt' \Pi^-(x_1, x') \Delta^+(x', x_2) + \int d^3 \mathbf{x}' \int_{t_i}^{t_2} dt' \Pi^+(x_1, x') \Delta^-(x', x_2)$$

$$\Delta_{\mathbf{q}}^{-}(t_{1}-t_{2})=i\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}e^{-i\omega(t_{1}-t_{2})}\rho_{\mathbf{q}}(\omega)$$

$$\rho_{\mathbf{q}}(\omega) = \left(\frac{i}{\omega^2 - \omega_{\mathbf{q}}^2 - \Pi_{\mathbf{q}}^A(\omega) - i\omega\epsilon} - \frac{i}{\omega^2 - \omega_{\mathbf{q}}^2 - \Pi_{\mathbf{q}}^R(\omega) + i\omega\epsilon}\right)$$

$$\begin{aligned} \Delta_{\mathbf{q}}^{+}(t_{1},t_{2}) &= \Delta_{\mathbf{q},\mathrm{in}}^{+}\dot{\Delta}_{\mathbf{q}}^{-}(t_{1})\dot{\Delta}_{\mathbf{q}}^{-}(t_{2}) + \ddot{\Delta}_{\mathbf{q},\mathrm{in}}^{+}\Delta_{\mathbf{q}}^{-}(t_{1})\Delta_{\mathbf{q}}^{-}(t_{2}) \\ &+ \dot{\Delta}_{\mathbf{q},\mathrm{in}}^{+}\left(\dot{\Delta}_{\mathbf{q}}^{-}(t_{1})\Delta_{\mathbf{q}}^{-}(t_{2}) + \Delta_{\mathbf{q}}^{-}(t_{1})\dot{\Delta}_{\mathbf{q}}^{-}(t_{2})\right) \\ &+ \int_{0}^{t_{1}} dt' \int_{0}^{t_{2}} dt'' \Delta_{\mathbf{q}}^{-}(t_{1} - t') \Pi_{\mathbf{q}}^{+}(t' - t'') \Delta_{\mathbf{q}}^{-}(t'' - t_{2}) \end{aligned}$$

$$\Delta_{\mathbf{q}}^{-}(\mathbf{y}) \simeq \frac{\sin(\Omega_{\mathbf{q}}\mathbf{y})}{\Omega_{\mathbf{q}}} e^{-\Gamma_{\mathbf{q}}|\mathbf{y}|/2}; \quad \mathbf{y} = t_1 - t_2, \quad t = (t_1 + t_2)/2$$

$$\begin{split} \Delta^{+}(y;t) &\simeq \frac{\Delta_{\mathbf{q},\mathrm{in}}^{+}}{2} \big(\cos(2\Omega_{\mathbf{q}}t) + \cos(\Omega_{\mathbf{q}}y) \big) e^{-\Gamma_{\mathbf{q}}t} \\ &+ \frac{\dot{\Delta}_{\mathbf{q},\mathrm{in}}^{+}}{\Omega_{\mathbf{q}}} \sin(2\Omega_{\mathbf{q}}t) e^{-\Gamma_{\mathbf{q}}t} \\ &- \frac{\ddot{\Delta}_{\mathbf{q},\mathrm{in}}^{+}}{2\Omega_{\mathbf{q}}^{2}} \big(\cos(2\Omega_{\mathbf{q}}t) - \cos(\Omega_{\mathbf{q}}y) \big) e^{-\Gamma_{\mathbf{q}}t} \\ &+ \frac{\coth(\frac{\beta\Omega_{\mathbf{q}}}{2})}{2\Omega_{\mathbf{q}}} \cos(\Omega_{\mathbf{q}}y) \left(e^{-\Gamma_{\mathbf{q}}|y|/2} - e^{-\Gamma_{\mathbf{q}}t} \right) \end{split}$$

$$\langle \phi_{\mathbf{q}}(t) \rangle \simeq \dot{\phi}_{\mathbf{q},\text{in}} \frac{\sin(\Omega_{\mathbf{q}}t)}{\Omega_{\mathbf{q}}} e^{-\Gamma_{\mathbf{q}}t/2} + \phi_{\mathbf{q},\text{in}} \cos(\Omega_{\mathbf{q}}t) e^{-\Gamma_{\mathbf{q}}t/2}$$

important quantity: spectral densities ρ_i of bath constituents

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
 - can be interpreted as quasiparticle with dispersion relation ω = Ω_i and width Γ_i given by *Re* and *Im* of poles
 - energy transfer between field modes happens via approximately energy conserving decays and scatterings of quasiparticles

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
 - can be interpreted as quasiparticle with dispersion relation ω = Ω_i and width Γ_i given by *Re* and *Im* of poles
 - energy transfer between field modes happens via approximately energy conserving decays and scatterings of quasiparticles
- broad resonances: no (quasi)particle interpretation, no simple kinematic arguments apply

15/23

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
 - can be interpreted as quasiparticle with dispersion relation ω = Ω_i and width Γ_i given by *Re* and *Im* of poles
 - energy transfer between field modes happens via approximately energy conserving decays and scatterings of quasiparticles
- broad resonances: no (quasi)particle interpretation, no simple kinematic arguments apply

 \Rightarrow need fully dressed spectral densities in the medium

consider diagrams of the type in ϕ -self-energy (=collision term)

16/23

- optical theorem relates resummed self energies to multiparticle amplitudes Weldon 1983; Landshoff 1996; Bedaque/Das/Naik 1997
- in medium additional amplitudes involving bath quanta contribute
- widths Γ_i parameterise the effect of multi-particle scatterings, including off-shell contributions and interferences

 \Rightarrow resummed perturbation theory can be employed

The Physical Picture

- in a dense medium (multiple) scatterings contribute to the dissipation rate ("Landau damping")
- Schwinger-Keldysh formalism and resummed perturbation theory allow a consistent first principles computation, including interferences and without reference to asymptotic states
- processes involving many quanta may contribute at same order as naively leading terms because
 - additional vertex suppression compensated by large occupation numbers
 - quanta in soft, collinear "bremsstrahlung" are almost on-shell
 - amplification due to induced transitions
- their contribution may be parameterised by widths of resonances in the plasma
- for broad resonances: no simple arguments in terms of single particle kinematics hold

Quasiparticle Regime

- narrow resonances: energy exchange between field modes can be viewed as approximately energy conserving decays and scatterings of quasiparticles
- leading order:
 - 3-vertices:

4-vertices:

 \Rightarrow even at leading order decay is not the only process!

 small apparent violation of energy conservation is due to multiple scatterings encoded in quasiparticle widths, it may have considerable effects

3-Vertex $\phi \chi_1 \chi_2$, $\Gamma_i / M_i \sim 10^{-2}$

- (a) on-shell decay $\phi \leftrightarrow \chi_1 \chi_2$ + higher order
- (b) on-shell absorption $\phi \chi_1 \leftrightarrow \chi_2$ + higher order

(c) off-shell only

3-Vertex $\phi \chi_1 \chi_2$, $\Gamma_i / M_i \sim 10^{-2}$

- (a) on-shell decay $\phi \leftrightarrow \chi_1 \chi_2$ + higher order
- (b) on-shell absorbtion $\phi \chi_1 \leftrightarrow \chi_2$ + higher order
- (c) off-shell only

Example I: Upper Bound *T_c* by Thermal Masses

Example II: Heating for $T > T_c$ by Off-Shell Processes

Example III: Heating for $T > T_c$ by Scatterings

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?

Conclusions

- Medium related modifications of the dispersion relations in the primordial plasma can affect the thermal history during reheating...
- ... but only in special cases thermal masses allow to impose an upper bound on the temberature if
 - effective masses are dominated by thermal masses (not coupling to $\langle \phi \rangle)$
 - resonances in the plasma have a sufficiently narrow width to suppress off-shell dissipation (quasiparticle description)
 - there are no other channels of dissipation (scatterings, Laundau damping...)