Marco Drewes École Polytechnique Fédérale de Lausanne

based on [arXiv:1012.5380 \[hep-th\]](http://arxiv.org/abs/1012.5380)

18.4.2011 at PONT meeting in Avignon

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?

Inflation

- numerous hints that the universe underwent accelerated expansion
- at the end of the inflationary phase: particles produced in "reheating"
- underlying microphysics of both processes unknown
- \bullet if all relevant physics can be parameterised in one scalar dof ϕ
	- constraints on potential $V(\phi)$ during inflation...
	- . . .but very little known about potential near minimum
- even in simple models it is a demanding task to model the details of the reheating process

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?

Reheating

- **e** early phase is a highly complicated far-from-equilibrium process that can yield interesting relics. . .
- \bullet ... but temperature T_R at onset of radiation dominated era may be determined by late phase

Reheating

- **e** early phase is a highly complicated far-from-equilibrium process that can yield interesting relics. . .
- \bullet ... but temperature T_R at onset of radiation dominated era may be determined by late phase
- **o** several simplifications
	- \bullet decay products thermalise on time scales $\ll 1/\Gamma$
	- \bullet ϕ is the only far-from-equilibrium dof, it dissipates in a thermal bath with slowly ($\sim 1/\Gamma$, 1/H) changing temperature T
	- \bullet $V(\phi)$ during oscillatinos near minimum approximately harmonic
	- **e** effective masses are dominated by "thermal masses"
	- **o** dissipation via perturbative processes (e.g. decay)

\Rightarrow relaxation of a scalar that is (very) weakly coupled to a thermal bath

An upper Bound on T_R ?

- dispersion relations of particles in a plasma are modified ("screening")
- **•** simplest case: modifications can be parameterised by replacing intrinsic masses m by thermal masses $M(T)$
- it has been suggested that the decay $\phi \rightarrow \chi_1 \chi_2$ (or similar $\phi \to \chi \chi \chi$ etc) is kinematically forbidden for $\sum_i M_i(\mathcal{T}) > M_\phi(\mathcal{T})$ \Rightarrow plasma cannot be heated to temperatures larger than \mathcal{T}_c with $\sum_i M_i(T_{\rm c}) = M_{\phi}(\mathcal{T}_{\rm c})!$ Kolb/Notari/Riotto 2003
- \bullet ϕ is very weakly coupled
	- $\bullet \; M_{\phi}(\mathcal{T}) \approx m_{\phi} \gg m_{i}$
	- \bullet thermal masses $M_i(T)$ determined by stronger interactions in the bath
	- \Rightarrow T_c does not depend on the inflaton coupling!

- argument is based on single particle kinematics
- \bullet is this valid in a dense nonequilibrium plasma?

- definition of asymptotic states in the omnipresent plasma?
- when can modified dispersion relations be parameterised by thermal masses?
- ³ gauge theories: gauge independent results require inclusion of processes that naivlely are of higher order - how does that accord with use of single particle distribution functions?
- inter particle distance $∼$ Compton wavelength?
- memory effects?
- ⁶ quantum coherence, interference?

Particles and Fields

- above problems arise if we *insist* to describe the system as a collection of individual (on-shell/classical) particles
- this is not always suitable (e.g. QCD near crossover, classical fields,. . .)
- \bullet it is also not necessary we are interested in overall relaxation of the system

Particles and Fields

- above problems arise if we *insist* to describe the system as a collection of individual (on-shell/classical) particles
- this is not always suitable (e.g. QCD near crossover, classical $field$ s \dots)
- \bullet it is also not necessary we are interested in overall relaxation of the system

Schwinger-Keldysh Formalism

Any quantum system can be described by correlation functions.

- no reference to asymptotic states and particles needed
- no trouble with "real intermediate state subtraction" etc
- allows to compute all observables at all times

Equations of Motion

- equations of motion form system of coulped 2nd order integro-differential equations of several variables that can only be solved numerically (Kadanoff-Baym equations). . .
- \bullet ... but for the weak coupling to a thermal bath formal analytic solutions can be found for bosons and fermions! Anisimov/Buchmüller/MaD/Mendizabal 2008,2010; MaD 2010
- \bullet weak coupling of ϕ allows to obtain explicit analytic expression
	- no coherence effects on timescales 1/Γ
	- no memory (ϕ : can be integrated, bath: erased by fast interactions)
	- but non-trivial kinematic effects
- allow to compute energy per mode as $\epsilon_{\bf q}^{\phi}(t) = \frac{1}{2} \left(\partial_{t_1} \partial_{t_2} + \omega_{\bf q}^2 \right) \left(\Delta_{\bf q}^+(t_1,t_2) + \langle \phi_{\bf q}(t_1) \rangle \langle \phi_{\bf q}(t_2) \rangle \right) \big|_{t_1=t_2=t_1}$

$$
\begin{array}{rcl}\n(\Box_1+m^2)\Delta^-(x_1,x_2) &=& -\int d^3\mathbf{x}'\int_{t_2}^{t_1} dt'\Pi^-(x_1,x')\Delta^-(x',x_2)\,,\\
(\Box_1+m^2)\Delta^+(x_1,x_2) &=& -\int d^3\mathbf{x}'\int_{t_i}^{t_1} dt'\Pi^-(x_1,x')\Delta^+(x',x_2)\\
& & +\int d^3\mathbf{x}'\int_{t_i}^{t_2} dt'\Pi^+(x_1,x')\Delta^-(x',x_2)\n\end{array}
$$

$$
\Delta_{\mathbf{q}}^{-}(t_{1}-t_{2})=i\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}e^{-i\omega(t_{1}-t_{2})}\rho_{\mathbf{q}}(\omega)
$$

$$
\rho_{\mathbf{q}}(\omega) = \left(\frac{i}{\omega^2 - \omega_{\mathbf{q}}^2 - \Pi_{\mathbf{q}}^A(\omega) - i\omega\epsilon} - \frac{i}{\omega^2 - \omega_{\mathbf{q}}^2 - \Pi_{\mathbf{q}}^R(\omega) + i\omega\epsilon} \right)
$$

$$
\Delta_{\mathbf{q}}^{+}(t_1, t_2) = \Delta_{\mathbf{q}, \text{in}}^{+} \dot{\Delta}_{\mathbf{q}}^{-}(t_1) \dot{\Delta}_{\mathbf{q}}^{-}(t_2) + \ddot{\Delta}_{\mathbf{q}, \text{in}}^{+} \Delta_{\mathbf{q}, \text{in}}^{-}(t_1) \Delta_{\mathbf{q}}^{-}(t_2) \n+ \dot{\Delta}_{\mathbf{q}, \text{in}}^{+} \left(\dot{\Delta}_{\mathbf{q}}^{-}(t_1) \Delta_{\mathbf{q}}^{-}(t_2) + \Delta_{\mathbf{q}}^{-}(t_1) \dot{\Delta}_{\mathbf{q}}^{-}(t_2) \right) \n+ \int_0^{t_1} dt' \int_0^{t_2} dt'' \Delta_{\mathbf{q}}^{-}(t_1 - t') \Pi_{\mathbf{q}}^{+}(t' - t'') \Delta_{\mathbf{q}}^{-}(t'' - t_2)
$$

 $-13/23$

$$
\Delta_{\mathbf{q}}^{-}(y) \simeq \frac{\sin(\Omega_{\mathbf{q}}y)}{\Omega_{\mathbf{q}}} e^{-r_{\mathbf{q}}|y|/2}; \quad y = t_1 - t_2, \quad t = (t_1 + t_2)/2
$$

$$
\begin{array}{rcl}\n\Delta^+(y;t) & \simeq & \frac{\Delta_{\bf q, in}^+}{2}\big(\cos(2\Omega_{\bf q}t)+\cos(\Omega_{\bf q}y)\big)e^{-\Gamma_{\bf q}t} \\
& & +\frac{\dot{\Delta}_{\bf q, in}^+}{\Omega_{\bf q}}\sin(2\Omega_{\bf q}t)e^{-\Gamma_{\bf q}t} \\
& & -\frac{\ddot{\Delta}_{\bf q, in}^+}{2\Omega_{\bf q}^2}\big(\cos(2\Omega_{\bf q}t)-\cos(\Omega_{\bf q}y)\big)e^{-\Gamma_{\bf q}t} \\
& & +\frac{\coth(\frac{\beta\Omega_{\bf q}}{2})}{2\Omega_{\bf q}}\cos(\Omega_{\bf q}y)\left(e^{-\Gamma_{\bf q}|y|/2}-e^{-\Gamma_{\bf q}t}\right)\n\end{array}
$$

$$
\langle \phi_{\mathbf{q}}(t) \rangle \simeq \dot{\phi}_{\mathbf{q},\text{in}} \frac{\sin(\Omega_{\mathbf{q}}t)}{\Omega_{\mathbf{q}}} e^{-\Gamma_{\mathbf{q}}t/2} + \phi_{\mathbf{q},\text{in}} \cos(\Omega_{\mathbf{q}}t) e^{-\Gamma_{\mathbf{q}}t/2}
$$

important quantity: spectral densities ρ_i of bath constituents

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
	- can be interpreted as quasiparticle with dispersion relation $\omega = \Omega_i$ and width Γ_i given by Re and Im of poles
	- energy transfer between field modes happens via approximately \bullet energy conserving decays and scatterings of quasiparticles

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
	- can be interpreted as quasiparticle with dispersion relation $\omega = \Omega_i$ and width Γ_i given by Re and Im of poles
	- energy transfer between field modes happens via approximately energy conserving decays and scatterings of quasiparticles
- **•** broad resonances: no (quasi)particle interpretation, no simple kinematic arguments apply

15 / 23

important quantity: spectral densities ρ_i of bath constituents

- if ρ_i features narrow peaks:
	- can be interpreted as quasiparticle with dispersion relation $\omega = \Omega_i$ and width Γ_i given by Re and Im of poles
	- energy transfer between field modes happens via approximately energy conserving decays and scatterings of quasiparticles
- **•** broad resonances: no (quasi)particle interpretation, no simple kinematic arguments apply

 \Rightarrow need fully dressed spectral densities in the medium

15 / 23

consider diagrams of the type in ϕ -self-energy (=collision term)

 $16/2$

- optical theorem relates resummed self energies to multiparticle amplitudes Weldon 1983; Landshoff 1996; Bedaque/Das/Naik 1997
- in medium additional amplitudes involving bath quanta contribute
- \bullet widths Γ_i parameterise the effect of multi-particle scatterings, including off-shell contributions and interferences

 \Rightarrow resummed perturbation theory can be employed

The Physical Picture

- in a dense medium (multiple) scatterings contribute to the dissipation rate ("Landau damping")
- Schwinger-Keldysh formalism and resummed perturbation theory allow a consistent first principles computation, including interferences and without reference to asymptotic states
- **•** processes involving many quanta may contribute at same order as naively leading terms because
	- additional vertex suppression compensated by large occupation numbers
	- quanta in soft, collinear "bremsstrahlung" are almost on-shell
	- amplification due to induced transitions
- their contribution may be parameterised by widths of resonances in the plasma
- **•** for broad resonances: no simple arguments in terms of single particle kinematics hold

Quasiparticle Regime

- narrow resonances: energy exchange between field modes can be viewed as approximately energy conserving decays and scatterings of quasiparticles
- **·** leading order:
	- **a** 3-vertices:

4-vertices:

 \Rightarrow even at leading order decay is not the only process!

• small apparent violation of energy conservation is due to multiple scatterings encoded in quasiparticle widths, it may have considerable effects

3-Vertex ϕ_{X1} _{X} $_2$, $\Gamma_i/M_i \sim 10^{-2}$

- (a) on-shell decay $\phi \leftrightarrow \chi_1 \chi_2$ + higher order
- (b) on-shell absorbtion $\phi \chi_1 \leftrightarrow \chi_2$ + higher order
- (c) off-shell only

3-Vertex ϕ_{X1X2} , $\Gamma_i/M_i \sim 10^{-2}$

- (a) on-shell decay $\phi \leftrightarrow \chi_1 \chi_2$ + higher order
- (b) on-shell absorbtion $\phi \chi_1 \leftrightarrow \chi_2$ + higher order
- (c) off-shell only

Example I: Upper Bound T_c by Thermal **Masses**

Example II: Heating for $T > T_c$ by Off-Shell **Processes**

Example III: Heating for $T > T_c$ by Scatterings

CAN THERMAL MASSES CONSTRAIN THE REHEATING TEMPERATURE?

Conclusions

- Medium related modifications of the dispersion relations in the primordial plasma can affect the thermal history during reheating. . .
- . . . but only in special cases thermal masses allow to impose an upper bound on the temberature if
	- effective masses are dominated by thermal masses (not coupling to $\langle \phi \rangle$
	- resonances in the plasma have a sufficiently narrow width to suppress off-shell dissipation (quasiparticle description)
	- \bullet there are no other channels of dissipation (scatterings, Laundau damping.. .)