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baryon asymmetry...
ollow the 3 “Palais des Papes” Commandments:
* Though shall violate baryon number
* Though shall respect neither C nor CP
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nt to create an asymmetry...
* Generalized Sakharov:
* Need violation of U(1)(p x1
* C and CP violation

* Departure from thermal equilibrium

* Many recent examples: Shelton & Zurek, Davoudiasl
et al, Haba & Matsumoto, Buckley & Randall...
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* Cohen and Kaplan, 1987.
* More recently: Carroll and Shu, 2005.
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* Cohen and Kaplan, 1987.
* More recently: Carroll and Shu, 2005.

* Breaking CPT means breaking Lorentz
* Bad idea now
* Could happen in early Universe...
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tz Violation

expanding Universe

* If my < H then critically damped;

SH d¢ 59x" (T I

* Lorentz violation: 9, ¢ = {¢7 0}
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f CPT violation. What about

lies chemical potential; shifts
iparticle) in thermal bath:

f+(E) = lexp((E — p)/T) -

= 1]_1



) Thermodynamics (ET)

s of CPT violation. What about

mplies chemical potential; shifts
/ of particle (antiparticle) in thermal bath:

f+(E) = [exp((E — p)/T) £ 1]

* Scalar coupled to current:

f f
b

-

* Generates effective chemical potential:
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Spontaneous Genesis

Sakharov in spontaneous genesis:
* C-violation; rolling gb derivatively coupled to J{B X1
* Thermal equilibrium
* Need violation of U(1)sp x1

Assume extra interactions which violate U (1) x

Interactions freeze out at /'y, whenever I‘X H

Sharing means generation of U(1);p x» asymmetry
Sharing freezes out at 1'g
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* Want X-violation to freeze out before ¢ starts oscillating
* E.g.for my = 1 TeV, field evolves as:
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* Want X-violation to freeze out before ¢ starts oscillating
* E.g.for my = 1 TeV, field evolves as:
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Want X-violation to freeze out before ¢ starts oscillating
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Spontaneous Genesis

Want X-violation to freeze out before ¢ starts oscillating
E.g. for m, = 1 TeV, field evolves as:

6/(do T)| [x 10']
@ 2

[a—
! ]

10 20 50 100 : 05
T[10'° GeV]

10 20 50 100
T[10'° Ge
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hemical potential from scalar

Dirac mass for dark matter
/ d?0 Mx XX
+/d29 WMSSM + »Csoft — W

1
+ / d?6 WXQUCDCDC
S
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Chemical potential from scalar
Dirac mass for dark matter

7 X+/d29 Mx XX

+/d29 WMSSM + £soft «——— Visible sector

4 / d?6 iszCDCDC

M3

If MS 2 1 TeV
Freezesoutat Tg = 70 GeV
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« X asymmetry conserved
* (B-L) asymmetry conserved
A e

v + X, B, and L asymmetries conserved



Genesis Before Sharing

* Schematically:

1s

TSph

 X-violation

* Scalar rolling

* Sharing

* B and X genesis

* Sharing
* Total asymmetry conserved

« X asymmetry conserved
* (B-L) asymmetry conserved

v + X, B, and L asymmetries conserved

* Require correct abundances:

X(Ts) :( X ) (B—L) eo™E
B(Tgph) B—L Ts B Toon : mx

* Dark matter mass just depends on 1's
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X +2(B-1L) T, .
B-L o E ; Bzt




Genesis Before Sharing

* Can track back to find required chemical potential at 7'y

B, (), (),

px(Tx) ~2.2x 107 7Tx

Non-relativistic

=

1/2
12 Ty f) ) « 104

Relativistic (
.0' m % g i
3 L * Mp ¢

* But damped roll requires:

T2
me < 1.669,.1/2 M—);




Genesis Before Sharing

* Can track back to find required chemical potential at 7'y
... and use this to find scalar mass.

px(Tx) ~2.2x 107 7Tx

=

3 1/2
1/2 TX f —4
~ gy ——— 10
i (g MP¢0> 5

* But damped roll requires:

T2
me < 1.669,.1/2 M—);




After Sharing

« X asymmetry conserved
* (B-L) asymmetry conserved

| e
* X, B, and L asymmetries conserved




IS After Sharing

S Sph

* Which gives us:
px(Ts) = 2.2 x 10" Tg

» X genesis continues
Tx |,
« X asymmetry conserved
* (B-L) asymmetry conserved 1ux (Tx) = — 1x (Ts
X

| e
* X, B, and L asymmetries conserved

* So we can find:

PDM = MXX(TXa nx (TX))S(Tnow)



Genesis After Sharing

* Broadens asymmetric dark matter mass range

* Blue: Tg =1 TeV
* Red: Tg =10 TeV
* Black: Tg =100 TeV

- Potential sourced by rolling scalar:

1
px (T) o¢
* Thus:
TS
px(Tx) = T—QNX(TS)
X

* So we can find:

PDM — MxX(Tx, 1356 (TX))S(Tnow)

100 500 1000
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ark sphalerons:

» Strongly first order not required

» Only one family as CP-violation not required
* Explicit violation
» Spontaneously broken dark GUT?



Dark Sector Models

Require violation of U(1);p x) athighT

In visible sector constrained
In dark sector?
* Dark sphalerons:
» Strongly first order not required
» Only one family as CP-violation not required
* Explicit violation
» Spontaneously broken dark GUT?
Require efficient annihilation of symmetric component
* Additional light bosons?



Spontaneous Matter Genesis
Conclusions

* Spontaneous genesis in the dark sector is appealing:
* Damped scalars very natural
* All in thermodynamic equilibrium
* No need for additional CP-violation

* X-violating operators much less constrained now
than B-violation



Spontaneous Matter Genesis
Conclusions

* Spontaneous genesis in the dark sector is appealing:
* Damped scalars very natural
* All in thermodynamic equilibrium
* No need for additional CP-violation

* X-violating operators much less constrained now
than B-violation

* Connecting dark to visible sector appealing

* Spontaneous genesis allows for broad range of dark
matter masses

* Predicts: Light scalar, direct detection...
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Reflections of the visible sector...
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Reflections of the visible sector...
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