Minimal models of inflation – connecting cosmology and experiment

Fedor Bezrukov

Ludwig-Maximilians-Universität München Arnold Sommerfeld Center for theoretical physics Germany

> PONT Avignon 2010 April 18, 2011

Outline

Our present knowledge of particle physics and the Universe

- Standard Model
- SM problems in laboratory and in cosmology

2 Minimal extension approach

Higgs mass bounds

Inflating with a light inflaton

- Inflationary model
- Bounds from cosmology inflation and reheating
- Experimental detection of the inflaton

Summary

Standard Model – describes nearly everything that we know

- Gauge theory SU(3) \times SU(2) \times U(I) Describes (together with Einstein gravity) [][][]
 - all laboratory experiments electromagnetism, nuclear processes, etc.
 - all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV, t > 1 sec)

Standard Model has experimental problems

- Laboratory
 - Neutrino oscillations
- Cosmology
 - Baryon asymmetry of the Universe
 - Dark Matter
 - Inflation
 - Horizon problem (and flatness, entropy, ...)
 - Initial density perturbations
 - Dark Energy

Neutrino oscillations

SAGE neutrino observatory (solar oscillations evidence $\nu_e \rightarrow \nu_\mu$)

SuperKamiokande (atmosferic oscillations $\nu_{\mu} \rightarrow \nu_{\tau}$)

Reactor neutrinos, accelerator neutrinos

Oscillation parameters

Δm_{21}^2	$7.59 {\scriptstyle \pm 0.20} imes 10^{-5} \text{ eV}^2$
$\sin^2 2\theta_{12}$	$\textbf{0.87}\pm\textbf{0.03}$
$ \Delta m_{32}^2 $	$2.43{\scriptstyle\pm0.13} imes10^{-3}~eV^2$
$\sin^2 2\theta_{23}$	> 0.92
$sin^2 2\theta_{13}$	< 0.15

Baryon asymmetry of the Universe

Heilum Abundance, Y_p 04

0.3

02

- Current universe contains baryons and no antibarions
- Current baryon density

$$\eta_{
m B}\equiv {{
m n}_{
m B}\over {
m n}_{\gamma}}\simeq {
m 6.1 imes 10^{-10}}$$

Does not fit into the SM (too weak CP violation, too smooth phase transition)

model of Big-Bang nucleosynthesis [11] - the bands show the 95% CL range. Boxes indicate the observed light element abundances (smaller boxes: $\pm 2\sigma$ statistical

Dark Matter

Gravitational lensing

CMB gives measured predictions from inflation Temperature fluctuations CMB spectrum

Inflationary parameters from CMB

- Spectrum of primordial scalar density perturbations is just a bit not flat $n_s-1\equiv \frac{d\log \mathcal{P}_{\mathcal{R}}}{d\log k}$
- Tensor perturbations are compatible with zero $r \equiv \frac{\mathcal{P}_{grav}}{\mathcal{P}_{rr}}$

Dark Energy

← Supernova type Ia redshifts

accelerated expansion of the Universe today $\Omega_{\Lambda}\simeq 0.74$

Different from inflation

- Much lower scale
- No need to stop it

Can be explained "just" by a cosmological constant (invented already by Einstein)

Universe history

Let us expand the model in a minimal way

- I will follow a "Minimal" approach
- Explain the experimental facts with
 - minimal number of new particles
 - no new physical scales

Different situation in usual approaches

- Solve hierarchy problems first
 - Supersymmetry, Extra dimensions ...

New physics at TeV energies – "masks" us from early Universe

Several examples of minimal extensions leading to inflation

Inflation with light inflaton

[Shaposhnikov, Tkachev'06] [Anisimov, Bartocci, FB'09] [FB. Gorbunov'10]

(Introduces new particle)

Higgs boson inflation

[FB, Shaposhnikov'08] [FB, Gorbunov, Shaposhnikov'09] [FB, Magnin, Shapshnikov'09] (Modifies Higgs-gravity interaction, new scales M_P/ξ , $M_P/\sqrt{\xi}$) R² (scalaron) inflation [Starobinsky'80] [Gorbunov, Panin'10]

(Modification only in the gravity sector)

Common prediction: Higgs mass window

- The model should be valid up to inflationary scale:
- Radiative corrections to the Higgs potenital may spoil this

The Light inflaton model

Let us try to do everything just within standard particle physics

Just add the inflaton!

Light inflaton model adds one scalar particle to the SM

$$\mathcal{L} = \begin{array}{c} \mathcal{L}_{\text{SM}} + \alpha H^{\dagger} H X^{2} + \frac{\beta}{4} X^{4} \\ \text{Standard Model} & \text{Interaction} & \text{Inflationary sector} \\ \text{(where } \beta \simeq \beta_{0} = 1.5 \times 10^{-13} - \text{inflationary requirement)} \\ m_{\chi} = m_{h} \sqrt{\frac{\beta}{2\alpha}} & - \text{the inflaton mass is defined by } \alpha \\ \end{array}$$

The Higgs-inflaton scalar potential is $V(H, X) = \lambda \left(H^{\dagger}H - \frac{\alpha}{\lambda}X^{2}\right)^{2} + \frac{\beta}{4}X^{4} - \frac{1}{2}\mu^{2}X^{2} + V_{0}$

[Anisimov, Bartocci, FB'09, FB, Gorbunov'10]

Radiative corrections require a small SM-inflaton coupling

Radiative corrections induce quartic coupling which should not spoil the flatness of the potential

This leads to an upper bound on the SM-inflaton interaction

$$lpha \lesssim 10^{-7}$$
 (roughly: $lpha < \sqrt{eta}$)

Lower bound for the inflaton mass

$${\sf m}_\chi >$$
 90 MeV

Radiative corrections require a small SM-inflaton coupling

Radiative corrections induce quartic coupling which should not spoil the flatness of the potential

This leads to an upper bound on the SM-inflaton interaction

$$lpha \lesssim 10^{-7}$$
 (roughly: $lpha < \sqrt{eta}$)

Lower bound for the inflaton mass

$${\sf m}_\chi >$$
 90 MeV

Preheating requires large SM-inflaton coupling

- After inflation: empty & cold
- Needed: hot, T_r > 150 GeV (to get baryogenesis)
- Equating H production rate ($\propto \alpha^2$) to Hubble expansion rate ($\propto T^2$) $\Gamma_{XX \rightarrow HH} \sim \mathcal{H}$

Lower bound on $\boldsymbol{\alpha}$

$$lpha\gtrsim$$
 7 $imes$ 10 $^{-10}$

Parametric resonance? Not so easy to create the Higgs

The large Higgs self interaction destroys coherence and spoils parametric resonance.

[Anisimov, Bartocci, FB'09]

▶ Details

Inflaton is in the experimentally explorable range

Inflaton mass window (from Cosmology)

90 MeV < m $_{\chi}$ < 1.8 GeV

Lower bound: radiative corrections

Upper bound: sufficient reheating

Also possible: $2m_H < m_\chi \lesssim 600$ GeV

Inflaton-SM Interactions

As the Higgs boson, but light and suppressed by $heta=\sqrt{2eta}{
m v}/{
m m}_{\chi}$

- Created: in meson decays
- Decays: the heaviest particle pairs (ee, $\pi\pi$, $\mu\mu$, KK)
- Interacts with media: extremely weakly

$$\begin{split} \mathcal{L}_{\chi\bar{\mathsf{f}}\mathsf{f}} = & \theta \, \frac{\mathsf{m}_{\mathsf{f}}}{\mathsf{v}} \, \chi \bar{\mathsf{f}}\mathsf{f} = \sqrt{2\beta} \, \frac{\mathsf{m}_{\mathsf{f}}}{\mathsf{m}_{\chi}} \chi \bar{\mathsf{f}}\mathsf{f} \\ \mathcal{L}_{\chi\pi\pi} = & \mathbf{2}\kappa \sqrt{2\beta} \cdot \frac{\chi}{\mathsf{m}_{\chi}} \cdot \left(\frac{1}{2}\partial_{\mu}\pi^{0}\partial^{\mu}\pi^{0} + \partial_{\mu}\pi^{+}\partial^{\mu}\pi^{-}\right) \\ & - (\mathbf{3}\kappa + \mathbf{1})\sqrt{2\beta} \cdot \frac{\chi}{\mathsf{m}_{\chi}} \cdot \mathsf{m}_{\pi}^{2} \cdot \left(\frac{1}{2}\pi^{0}\pi^{0} + \pi^{+}\pi^{-}\right) \qquad \left(\kappa = \mathbf{2}/9\right) \\ \mathcal{L}_{\chi\gamma\gamma} \approx & \frac{\mathsf{F}_{\gamma\gamma}\alpha}{4\pi} \, \frac{\sqrt{2\beta}}{\mathsf{m}_{\chi}} \, \chi \, \mathsf{F}_{\mu\nu}\mathsf{F}^{\mu\nu} \qquad \qquad \mathcal{L}_{\chi\mathsf{gg}} \approx \frac{\mathsf{F}_{\mathsf{gg}}\alpha_{\mathsf{s}}}{4\sqrt{8}\pi} \, \frac{\sqrt{2\beta}}{\mathsf{m}_{\chi}} \, \chi \, \mathsf{G}_{\mu\nu}^{\mathsf{a}}\mathsf{G}^{\mathfrak{a}\,\mu\nu} \end{split}$$

Inflaton is relatively long lived

Produced in meson decays and in beam dumps

$$\begin{split} & \text{Br} \left(\text{K}^+ \to \pi^+ \chi \right) \approx \textbf{2.3} \times 10^{-9} \\ & \text{Br} \left(\text{K}_{\text{L}} \to \pi^0 \chi \right) \approx \textbf{1.0} \times 10^{-8} \\ & \text{Br} \left(\eta \to \pi^0 \chi \right) \approx \textbf{1.8} \times 10^{-12} \\ & \text{Br} \left(\text{B} \to \text{X}_{\text{s}} \chi \right) \approx \qquad 10^{-5} \end{split}$$

$$imes \left(rac{eta}{eta_0}
ight) \cdot \left(rac{100\,{
m MeV}}{{
m m}_\chi}
ight)^2 \cdot {
m k}\left(rac{{
m m}_\chi}{{
m m}_{
m meson}}
ight)$$

In a p-beam dump (via meson decays), ideal luminosity

	E, GeV	N _{POT} , 10 ¹⁹
NuTeV	800	1
CNGS	400	4.5
NuMi	120	5
T2K	50	100

2 / 27

Experimental detection of the inflaton

B-meson decays - search for the inflaton!

$$\begin{array}{c} \text{Br}\left(\text{K}^{+} \to \pi^{+}\chi\right) \approx 2.3 \times 10^{-9} \\ \text{Br}\left(\text{K}_{\text{L}} \to \pi^{0}\chi\right) \approx 1.0 \times 10^{-8} \\ \text{Br}\left(\eta \to \pi^{0}\chi\right) \approx 1.8 \times 10^{-12} \\ \text{Br}\left(\text{B} \to \text{X}_{\text{s}}\chi\right) \approx 10^{-5} \end{array} \right\} \times \left(\frac{\beta}{\beta_{0}}\right) \cdot \left(\frac{100 \text{ MeV}}{\text{m}_{\chi}}\right)^{2} \cdot \text{k}\left(\frac{\text{m}_{\chi}}{\text{m}_{\text{meson}}}\right) \\ \text{LHCb: events with offset vertex} \end{array}$$

In a p-beam dump (via meson decays), ideal luminosity

	E, GeV	N _{POT} , 10 ¹⁹
NuTeV	800	1
CNGS	400	4.5
NuMi	120	5
T2K	50	100

[Asaka, Blanchet, Shaposhnikov'05, Shaposhnikov, Tkachev'06]

- DM sterile neutrinos are produced in inflaton decays
- BAU via leptogenesis with two heavier sterile neutrinos

Possible search for νMSM neutrino in the lab and in the Universe

- $\bullet\,$ DM sterile neutrino N1, M1 $\sim 1-$ 80keV
 - ${\rm X}\mbox{-ray}$ line from the DM radiative decay ${\rm N}_{\rm I} \rightarrow \nu \gamma$
 - Neutrinoless double beta decay $m_{ee} < 50 \times 10^{-3}$ eV [FB'05] Details

- \bullet Lepton asymmetry generating N_{2,3}, M_{2,3} \sim~ GeV
 - Neutrino production hadron decays: kinematics
 - Missing energy in K decays
 - Peaks in momentum of charged leptons for two body decays
 - Neutrino decays into SM particles: "nothing" to leptons and hadrons
 - Beam target experiments with high intensity proton beam, detector (preferably not dense) after the shielding.

[D. Gorbunov, M.Shaposhnikov'07]

Summary

Start from:

- Explain every experimental fact
- Expand the Standard Model in a minimal way

Arrive to:

• Predictions for low energy experiments!

Examples:

- Model with additional scalar inflaton
 - Light inflaton reachable in particle physics experiments

• ...!

Higgs inflation

Non-minimal coupling to gravity solves the problem

Quite an old idea

Add h^2R term (required by renormalization) to of the usual M_PR term in the gravitational action

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

Scalar part of the (Jordan frame) action

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{\rho}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - \nu^{2})^{2} \right\}$$

- h is the Higgs field; $M_P \equiv rac{1}{\sqrt{8\pi G_N}} = 2.4 imes 10^{18}\, {
 m GeV}$
- SM higgs vev v $\ll M_P/\sqrt{\xi}$ and can be neglected in the early Universe

Potential – different stages of the Universe

Minimal inflation - cosmology and experime

30 / 27

Scalaron (ϕ) generation of fermionic CDM

$$\begin{split} \mathbf{S}^{\text{EF}}_{\varphi} &= \int \sqrt{-\tilde{g}} \, d^4 \mathbf{x} \Big(\frac{1}{2} \, \tilde{g}^{\mu\nu} \partial_{\mu} \tilde{\varphi} \partial_{\nu} \tilde{\varphi} - \frac{1}{2} e^{-\frac{\phi}{\sqrt{3/2M_P}}} \, m_{\varphi}^2 \tilde{\varphi}^2 \\ &- \frac{\tilde{\varphi}^2}{12 \, M_P^2} \, \tilde{g}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{\tilde{\varphi}}{\sqrt{6} \, M_P} \, \tilde{g}_{\mu\nu} \partial_{\mu} \tilde{\varphi} \partial_{\nu} \phi \Big) \; , \\ \mathbf{S}^{\text{EF}}_{\psi} &= \int \sqrt{-\tilde{g}} \, d^4 \mathbf{x} \left(i \bar{\psi} \hat{\tilde{\mathcal{D}}} \tilde{\psi} - m_{\psi} e^{-\frac{\phi}{\sqrt{6}M_P}} \, \bar{\psi} \tilde{\psi} \right) \; . \\ \Gamma_{\phi \to \phi \phi} &= \frac{\mu^3}{192 \pi \, M_P^2} \; , \qquad \Gamma_{\phi \to \bar{\psi} \psi} = \frac{\mu \, m_{\psi}^2}{48 \pi \, M_P^2} \; . \\ m_{\varphi} &\approx 6.9 \; \text{keV} \times \left(\frac{N_s}{4} \right)^{1/2} \left(\frac{g_*}{106.75} \right)^{1/4} \left(\frac{\Omega_{\text{DM}}}{0.223} \right) \end{split}$$

$$\mathbf{m}_{\psi} \approx 1.2 \times 10^{7} \; \text{GeV} \times \left(\frac{N_{\text{s}}}{4}\right)^{\!\!1/6} \left(\frac{\mathbf{g}_{*}}{106.75}\right)^{\!\!1/12} \left(\frac{\Omega_{\text{DM}}}{0.223}\right)^{\!\!1/3}$$

WMAP-5 bounds

Message

With non-minimal coupling it is very natural for $\beta \phi^4$ inflation to be compatible with observations!

Parametric enchancement

Let us suppose again that there is an inflaton X coupled to some particle ϕ . Then, during inflaton oscillations, for the ϕ modes with momentum k we have

$$\ddot{\phi}_{k} + 3H\dot{\phi}_{k} + \left(\frac{k^{2}}{a^{2}(t)} + g^{2}X(t)^{2}\right)\phi_{k} = 0$$

Important - X(t) oscillates

• Let us neglect the Universe expansion, and say that $X(t) = A\sin(\omega t)$, then

Mathieu equation

$$rac{{\mathsf d}^2 \phi_{\mathsf k}}{{\mathsf d}\eta^2} + ({\mathsf A}_{\mathsf k} - 2{\mathsf q}\cos2\eta) = 0$$

where
$$A_k = k^2/\omega^2 + 2q$$
, $q = g^2 X_0^2/4\omega^2$, $\eta = \omega t$.

Temperature estimate for the reheating

Equating mean free path $n\sigma_{2I\to 2H}v \sim n \frac{\alpha^2}{\pi p_{avg}^2}$ with the Hubble rate $H = \frac{T^2}{m_{Pl}} \sqrt{\frac{\pi^2 g_*}{90}}$ we get $T_R \approx \frac{\zeta(3)\alpha^2}{\pi^4} \sqrt{\frac{90}{g_*}} m_{Pl}$

Requiring T_R > 150 GeV we can obtain the lower bound on α $\alpha \geq {\rm 7.3 \times 10^{-8}} \; ,$

Temperature estimate for the reheating II

However, $P_{avg} \approx T$, the cross-section is enhanced, so $\frac{\zeta(3)\alpha^2}{\pi^3} \frac{T^4}{P_{avg}^3} \sim \frac{T^2}{\sqrt{\frac{90}{8\pi^3 g^*}}} M_{Pl}$

For this estimate the bound is weaker $\label{eq:alpha} \alpha \geq \mathbf{7} \times \mathbf{10}^{-\mathbf{10}}$

Dark matter – add ν MSM and stir

A ν MSM inspired model with inflation χ [Shaposhnikov, Tkachev'06]

$$\begin{split} \mathcal{L} = & (\mathcal{L}_{\mathsf{SM}} + \bar{\mathsf{N}}_{\mathrm{I}} \mathsf{i} \partial_{\mu} \gamma^{\mu} \mathsf{N}_{\mathrm{I}} - \mathsf{F}_{\alpha \mathrm{I}} \bar{\mathsf{L}}_{\alpha} \mathsf{N}_{\mathrm{I}} \Phi - \frac{\mathsf{f}_{\mathrm{I}}}{2} \bar{\mathsf{N}}_{\mathrm{I}}^{c} \mathsf{N}_{\mathrm{I}} \mathsf{X} + \mathsf{h.c.}) + \\ & \frac{1}{2} (\partial_{\mu} \mathsf{X})^{2} - \mathsf{V}(\Phi, \mathsf{X}) \end{split}$$

$$\Omega_{\rm N} = \frac{1.6 {\rm f}({\rm m}_{\chi})}{{\rm S}} \cdot \frac{\beta}{1.5 \times 10^{-13}} \cdot \left(\frac{{\rm M}_{\rm l}}{10 {\rm keV}}\right)^3 \cdot \left(\frac{100 \ {\rm MeV}}{{\rm m}_{\chi}}\right)^3 \ ,$$

DM sterile neutrino mass should be

$$M_{l} \sim 13 \cdot \left(\frac{m_{\chi}}{300 \text{ MeV}}\right) \left(\frac{\text{S}}{4}\right)^{1/3} \cdot \left(\frac{0.9}{\text{f}(m_{\chi})}\right)^{1/3} \text{keV} \; .$$

$\mathbf{0}\nu\beta\beta$ effective Majorana mass is small

 \bullet contribution from N_1 is negligible $|M_1\theta_{e1}^2| \leq 10^{-5}~eV$

• For heavier active neutrinos the contribution is always negative $m_{ee} < \left|\sum_{i} m_i V_{ei}^2\right|$ smaller prediction

$$m_{ee} < 50 \times 10^{-3} \text{ eV}$$

[FB'05]

- FB, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)
- FB, D. Gorbunov, M. Shaposhnikov, JCAP 06, 029 (2009)
- FB, A. Magnin, M. Shaposhnikov, Phys. Lett. B 675, 88 (2009)
- FB, A. Magnin, M. Shaposhnikov, S. Sibiryakov, JHEP 1101, 016 (2011).
- FB, M. Shaposhnikov, JHEP 0907 (2009) 089
- A. Anisimov, Y. Bartocci, F. L. Bezrukov, Phys. Lett. B 671, 211 (2009)
- FB, D. Gorbunov, JHEP 05 (2010) 010
- T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17
- T. Asaka, S. Blanchet, M. Shaposhnikov, Phys. Lett. B 631 (2005) 151
- M. Shaposhnikov, I. Tkachev, Phys. Lett. B 639 (2006) 414
 - D. S. Gorbunov, A. G. Panin, [arXiv:1009.2448 [hep-ph]]
- A. A. Starobinsky, Phys. Lett. B91 (1980) 99-102
 - F. L. Bezrukov, Phys. Rev. D72 (2005) 071303

