

(cosmological) tests of acceleration: why and what

Martin Kunz

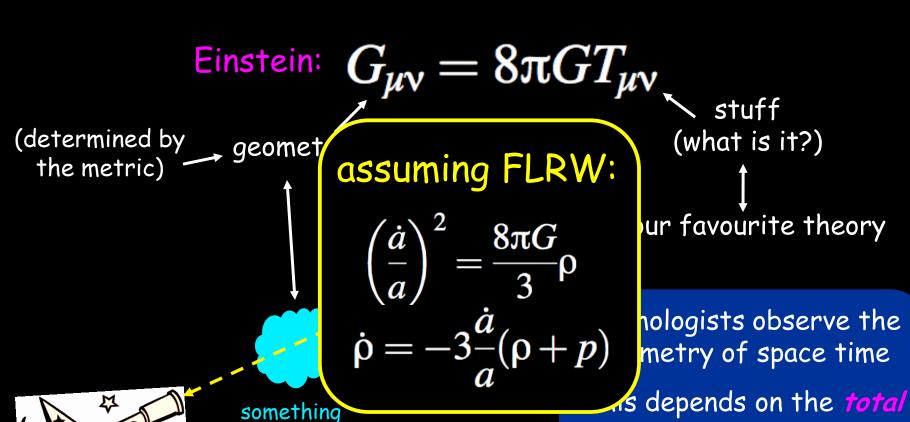
University of Geneva

testing acceleration...

Outline

- quantifying the acceleration
- does inflation look like dark energy?
- beyond w
 - o formalism
 - o examples
 - o what can we learn
- outlook + summary

measuring dark things (in cosmology)



else

That is what we measure!

energy momentum tensor

constraints on the total w

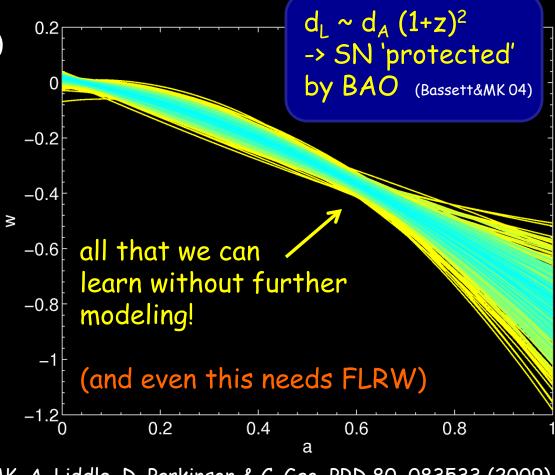
$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$
 $\dot{\rho} = -3\frac{\dot{a}}{a}(\rho + p)$ \rightarrow rewrite p = w ρ

- quadratic expansion of w(a)
- fit to Union SNe, BAO and CMB peak location

 → just distances, no
 perturbations

- best: $\chi^2 = 309.8$
- ΛCDM : $\chi^2 = 311.9$
- w const.: $\chi^2 = 391.3$

definitely not w=0!

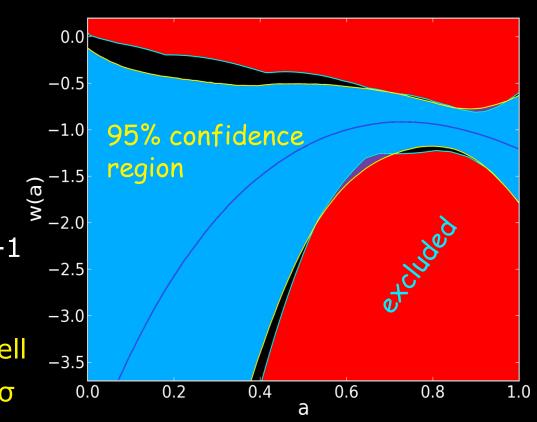


MK, A. Liddle, D. Parkinson & C. Gao, PRD 80, 083533 (2009)

dark energy w(a)

total w : weighted combination of w_{DE} and $w_{DM}(=0)$

- → what is what?
- → need specific model for DE!
- canonical scalar field model $[\leftrightarrow c_s^2=1, \sigma=0]$
- WMAP-7yr + SN-Ia compilation
- regularised transition of w=-1
- cubic expansion of w(a)
- cosmological constant fits well
- |1+w| < 0.2 at a ~ 0.8 @ 2σ



To make this figure, we needed to fix the perturbations - but what can/should be fixed?

very early dark energy?

The cosmological constant (w=-1, no perturbations) fits the data very well. Why look further?

Because we don't like it!

Inflation is usually modeled as a period of accelerated expansion, just like dark energy

- Is this unavoidable?
- Was inflation due to a cosmological constant?
- What would we have observed during inflation?

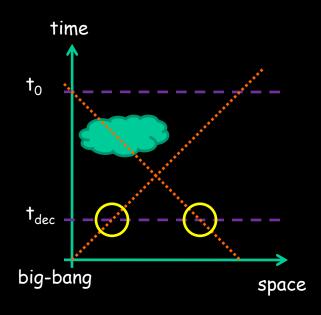
causal sources after COBE?

COBE observed fluctuations correlated on scales much larger than the horizon at last scattering!

- -> Horizon problem
- -> is this not proof of "acausal" physics?

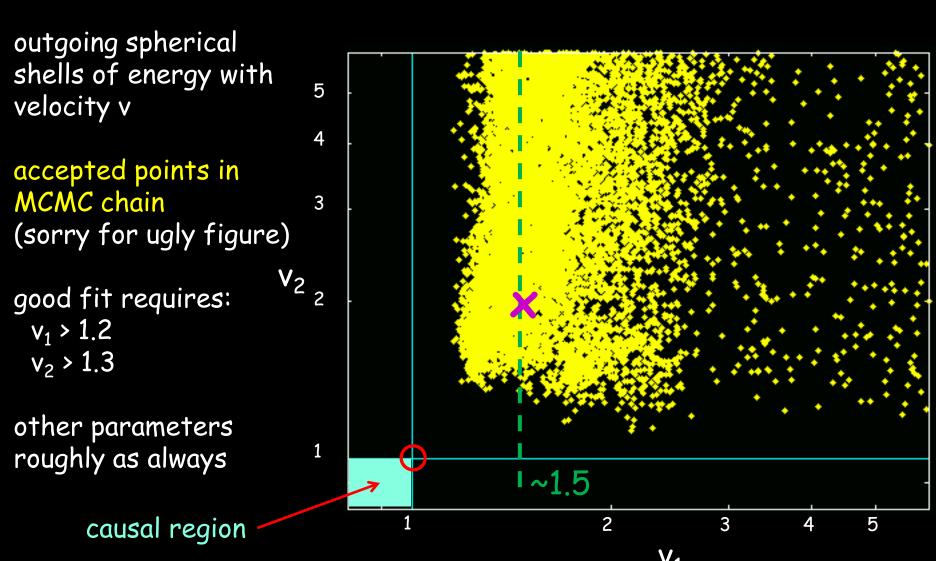
NO!

Can create them at late times with time-dependent potentials (ISW).



(a) causality constraints

(Scodeller, MK & Durrer, 2009)



TE cross-polarisation

Polarisation induced at last scattering and reionisation [Spergel & Zaldarriaga, 1997] -- TE shows a dip around I ~ 100:

adiabatic density mode $\sim \cos(kc_s t_{dec})$ velocity mode: derivative $\sim \sin(kc_s t_{dec})$

TE: sin(2kcstdec)

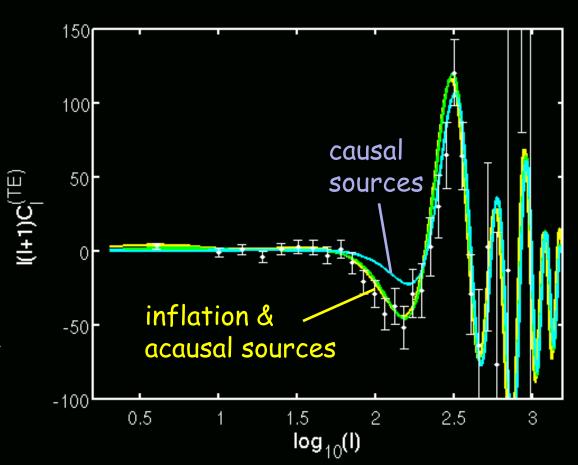
peak: kt_{dec} ≈ 0.66

horizon: kt_{dec} ~ 1/v

-> v ~ 1.5

possibilities:

- inflation
- acausal physics
- huge reionisation finetuning (?)



w during inflation

(Ilic, MK, Liddle & Frieman, 2010)

Scalar field inflaton:

 $\mathbb{R}[+mg::::::rac{2}{3}] \frac{\hat{\mathcal{H}}}{\mathcal{H}^{2}}::::rac{2}{3} rac{\hat{\mathcal{H}}}{\mathcal{H}^{2}}$

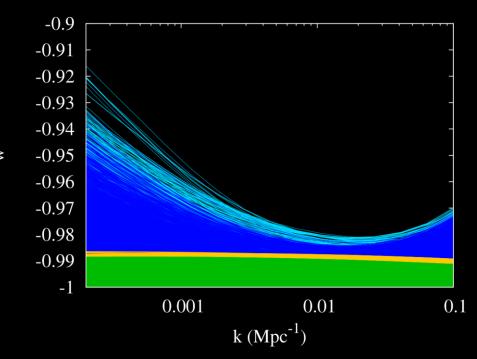
and $r = T/S \sim 24 (1+w)$

Link to dw/da:

 $n_s \neq 1 \Rightarrow \epsilon \neq 0 \text{ or } \eta \neq 0$ => $w \neq -1$ and/or w not constant

WMAP 5yr constraints on w:

- (1+w) < 0.02
- No deviation from w=-1 necessary (but in the middle of long slow-roll period, not clear if representative of dark energy)



- \rightarrow w ~ -1 appears natural during observable period of inflation
- → but it was not an (even effective) cosmological constant!

measuring dark things (in cosmology)

Einstein eq. (possibly effective):

$$G_{\mu \nu} - 8\pi G T_{\mu \nu}^{(bright)} = 8\pi G T_{\mu \nu}^{(dark)}$$
 directly measured

given by metric:

- H(z)
- $\Phi(z,k)$, $\Psi(z,k)$

- inferred from lhs
- obeys conservation laws
- can be characterised by

•
$$p = w(z) \rho$$

•
$$\delta p = c_s^2(z,k) \delta \rho, \pi(z,k)$$

linear perturbation equations

metric:

$$ds^{2} = -(1+2\psi)dt^{2} + a(t)^{2}(1-2\phi)dx^{2}$$

conservation equations (in principle for full dark sector)

$$\delta_i' = 3(1+w_i)\phi' - \frac{V_i}{Ha^2} - \frac{3}{a}\left(\frac{\delta p_i}{\rho_i} - w_i\delta_i\right) \quad \delta p = c_s^2 \delta \rho + 3Ha(c_s^2 - c_a^2)\rho \frac{V}{k^2}$$

$$V_i' = -(1-3w_i)\frac{V_i}{a} + \frac{k^2}{Ha}\left(\frac{\delta p_i}{\rho_i} + (1+w_i)(\psi - \sigma_i)\right)$$

(vars: $\delta = \delta \rho / \rho$, V ~ divergence of velocity field, $\delta \rho$, σ anisotropic stress)

Einstein equations (common, may be modified if not GR)

$$k^{2}\phi = -4\pi Ga^{2}\sum_{i}\rho_{i}\left(\delta_{i} + 3Ha\frac{V_{i}}{k^{2}}\right)$$
$$k^{2}(\phi - \psi) = 12\pi Ga^{2}\sum_{i}(1 + w_{i})\rho_{i}\sigma_{i}$$

(Bardeen 1980)

simplified observations

- Curvature from radial & transverse BAO
- w(z) from SN-Ia, BAO directly (and contained in most other probes)
- In addition 5 quantities, e.g. ϕ , ψ , bias, δ_m , V_m
- Need 3 probes (since 2 cons eq for DM)
- e.g. 3 power spectra: lensing, galaxy, velocity
- Lensing probes $\phi + \psi$
- Velocity probes ψ (z-space distortions?)
- And galaxy P(k) then gives bias
- → what do we learn if we do this?

some model predictions

$$k^2\phi = -4\pi Ga^2Q\rho_m\Delta_m \quad \psi = (1+\eta)\phi$$

scalar field:
$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi) \right)$$

One degree of freedom: $V(\phi) \leftrightarrow w(z)$ therefore other variables fixed: $c_s^2 = 1$, $\sigma = 0$ $\rightarrow \eta = 0$, $Q(k \rightarrow H_0) = 1$, $Q(k \rightarrow H_0) \sim 1.1$

(naïve) DGP: compute in 5D, project result to 4D

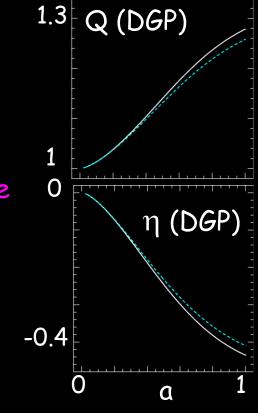
Lue, Starkmann 04 Koyama, Maartens 06
$$\eta=\frac{2}{3\beta-1}$$
 $Q=1-\frac{1}{3\beta}$ implies large DE perturb.

Scalar-Tensor:

Boisseau, Esposito-Farese, Polarski, Starobinski 2000, Acquaviva, Baccigalupi, Perrotta 04

$$\mathcal{L} = F(\varphi)R - \partial_{\mu}\varphi\partial^{\mu}\varphi - 2V(\varphi) + 16\pi G^*\mathcal{L}_{\text{matter}}$$

$$\eta = \frac{F'^2}{F + F'^2}$$
 $Q = \frac{G^*}{FG_0} \frac{2(F + F'^2)}{2F + 3F'^2}$

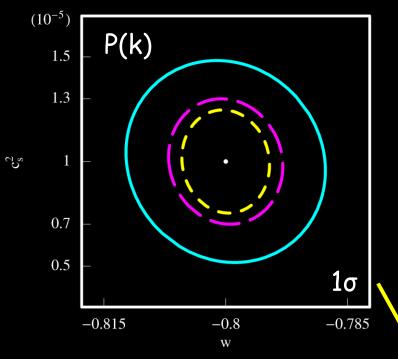


behaviour of scalar field δ

model { $w,c_s,\sigma=0$ }; matter dom.: $\Phi = constant$, $\delta_m \sim a$

$$\delta = \delta_0(1+w) \left(\frac{a}{1-3w} + \frac{3H_0^2\Omega_m}{k^2}\right) \rightarrow \delta(w=-0.8) \le 1/20 \ \delta(w=0)$$
on subhorizon scales
$$\delta = \delta_0 \frac{3}{2} (1+w) \frac{H_0^2\Omega_m}{c_s^2 k^2}$$

 \boldsymbol{a}



can we see the DE sound horizon?

two large surveys to $z_{max} = 2, 3, 4$ fiducial model has w=-0.8 \rightarrow only if $c_s<0.01$ can we measure it! (for w=-0.9 we need $c_s<0.001$)

(10^{-5})			
	1.8	- WL		
	1.4	_		
$c_{\rm s}^2$	1		٠	
	0.6			
	0.2			1σ
		-0.84	-0.8	-0.76

$P(k)+\mathrm{WL}$						
c_s^2	σ_{w_0}	$\sigma_{c_s^2}/c_s^2$	$\left \sigma_W/W ight $			
10^{-5}	0.00639	0.15	0.11			
10^{-4}	0.00581	0.41	0.36			
10^{-3}	0.00547	0.87	1.02			
10^{-2}	0.00531	2.48	2.39			
10^{-1}	0.00528	14.79	13.14			
1	0.00524	22.05	21.29			

(Sapone & MK 2009; Sapone, MK & Amendola 2010)

the importance of η / σ

(Saltas & MK 2011, cf talk yesterday afternoon)

scalar-tensor theories:
$$\eta = \frac{F'^2}{F + F'^2}$$

$$f(R)$$
 theories: $\eta = 0 \leftrightarrow f''(R) = 0$; $R+f(G)$: $\eta = 0 \leftrightarrow f''(G) = 0$

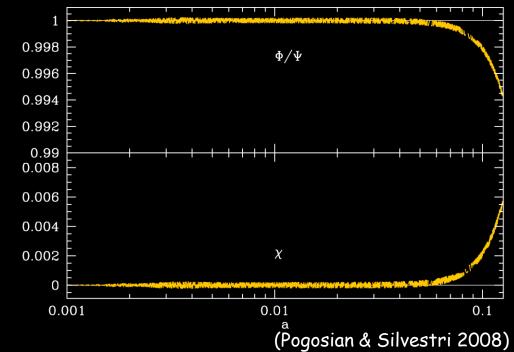
f(R,G): in de Sitter background requires mass of effective scalar to diverge \rightarrow instabilities, dS cannot be reached dynamically

also in DGP $\eta \neq 0$!

canonical scalar field: η = 0

→ standard 'GR' model: at late
times only very small anisotropic
stress from relativistic particles

→ η can rule out whole classes of models!

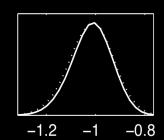


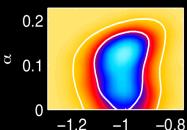
current constraints on σ~(φ-ψ)

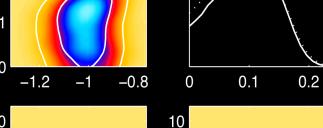
(from Lukas Hollenstein, private communication)

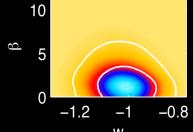
Inspired by modified gravity models: $\sigma \sim a \Delta_m + \beta \psi$

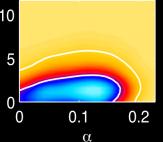
- WMAP-7yr & SN-Ia data compilation
- w, a, β constant
- $c_s = 1 (\rightarrow Q \approx 1 \text{ for } \sigma = 0)$
- w consistent with -1
- a, β consistent with 0
- no signs of anything strange going on

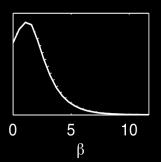








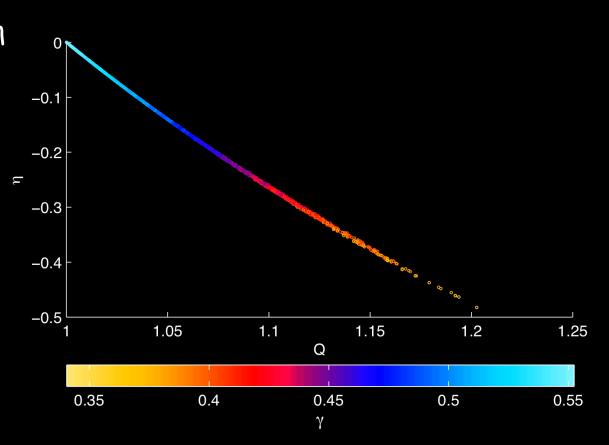




expressed as Q and eta

(again Lukas Hollenstein)

- Projection on Q and n (on small scales)
- Need to vary also c_s^2 (δp) to access more of parameter space
- really need 2 extra parameters!
- again consistent with standard model



- \rightarrow current constraints are weak, O(1) in Q and $\eta!$
- \rightarrow no deviation from standard cosmology ('GR')

current state of constraints

methodology:

'just' stick a model into a likelihood for as much data as you believe

model:

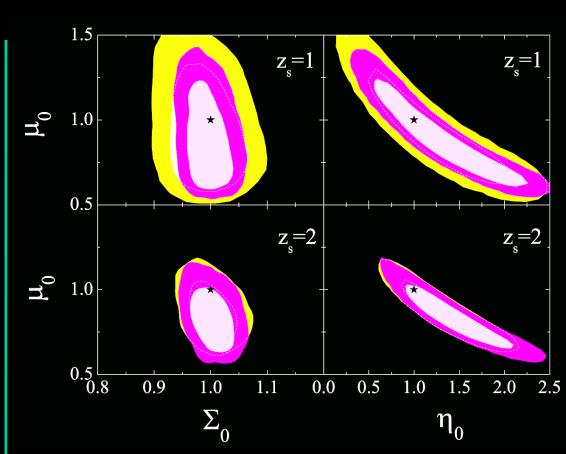
binned or parametrised variables, e.g. $\{w, Q, \eta\}$

data:

SN-Ia & BAO: constrain w CMB: other params + ISW WL: beware systematics

result:

weak constraints, no deviations from LCDM

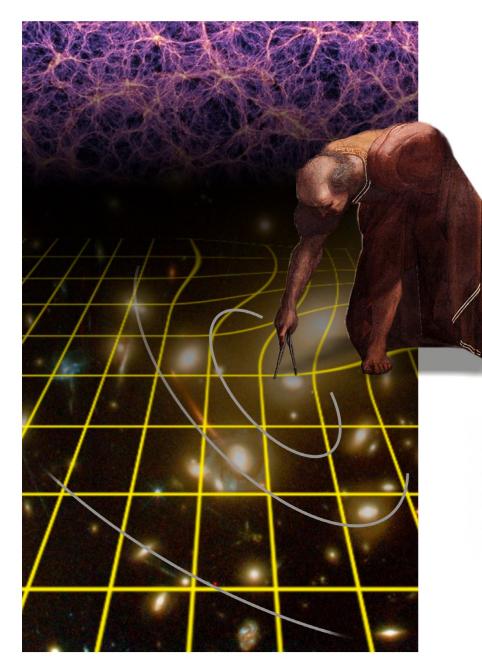


(Zhao et al 2010)

WL+CMB+ISW, model w/ transition

 μ : modified Poisson eqn. in $\psi \sim Q$

Σ: lensing $(\phi+\psi)$, $\eta \sim \phi/\psi$



Euclid Mapping the Geometry of the Dark Universe

- the nature of the Dark Energy
- the nature of the Dark Matter
- the initial conditions (Inflation Physics)
- modifications to Gravity

The Euclid Mission

Primary probes:

all-sky Vis+NIR imaging and spectroscopic survey

- Weak Lensing
- Galaxy Clustering, BAO

Additional Probes: cluster counts, redshift space distortions, integrated Sachs-Wolfe effect

huge legacy data set!

other science: strong lensing, galaxy evolution, star formation, supernovae, extrasolar planets (even Earth-sized planets in habitable zone!)

conclusions

- ✓ if metric is close to FLRW, then acceleration is detected at very high significance
- ✓ behaviour is compatible with cosmological constant
- ✓ even when taking into account perturbations
- ✓ but same would have been true during inflation
- ✓ we need to improve measurements of perturbations as they are a good model discriminator
- ✓ example: anisotropic stress and modifications of GR
- ✓ first goal should be: Kill Bill Lambda
- ✓ need to combine probes, e.g. lensing and velocities
- ✓ Euclid would be a great mission for this purpose