Electroweak Lights from Dark Matter Annihilation

Alfredo Urbano

IFAE - Universitat Autònoma de Barcelona

PONT 2011, Avignon 21 April 2011

Stable Particles from DM annihilation

Primary Final Stable Channels Particles

Stable Particles from DM annihilation

Primary Final Stable Channels Particles

$1^{\rm st}$ Scenario

P.Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia, A.U.

"Weak Corrections are Relevant in Dark Matter Indirect Detection",

JCAP 1103, 019 (2011).

M = 3000 GeV

Key Point: log-enhanced terms

$$\underline{\Delta\sigma}_{\overline{O}} = \alpha_{W} \left(ln_{\overline{M}_{W}^{2}}^{2} + ln_{\overline{M}_{W}^{2}}^{2} \right)$$

Key Point: log-enhanced terms

$$\frac{\Delta\sigma}{\sigma} = \alpha_{W} \left(ln_{M_{W}^{2}}^{2} + ln_{M_{W}^{2}}^{2} \right)$$

$$0.03$$

Key Point: log-enhanced terms

Key Point: $SU(2)_L \otimes U(1)_Y$ q.n.

 $L \sim Q$ (hadrons)

Key Point: Fragmentation of the Energy

TeV scale

GeV scale

On the role of Electroweak Corrections: 1^{st} scenario On the role of Electroweak Corrections: 2^{nd} scenario

 $DM DM \rightarrow e_L^+ e_L^-$

$$DM DM \rightarrow e_L^+ e_L^-$$

 e_L at M = 3000 GeV

$$DM DM \rightarrow e_L^+ e_L^-$$

 e_L at M = 3000 GeV

PAMELA: $DM DM \rightarrow \mu_L^+ \mu_L^-$

 $DM DM \rightarrow \mu_L^+ \mu_L^-$ with M = 2. TeV, MED, NFW

$2^{\rm nd}$ Scenario

P.Ciafaloni, M. Cirelli, D. Comelli, A. De Simone, A. Riotto, A.U.

"On the Importance of Electroweak Corrections for Majorana Dark Matter Indirect Detection."

ArXiv:1104:2996

$$v\sigma(2 \rightarrow 2) = \alpha + bv^2$$

p-wave suppression (remember $v = 10^{-3}$)

see L.Bergstrom, Phys. Lett. B225, 372 (1989) for γ

Energy Spectra Majorana DM

 $M_{\rm DM} = 1 {
m TeV}$, $M_S = 4 {
m TeV}$

Energy Spectra Majorana DM

 $M_{\rm DM} = 1 {
m TeV}$, $M_S = 4 {
m TeV}$

Energy Spectra after propagation

Conclusions

- Relevant for energy spectra when DM mass is much larger than EW scale
- Relevant when there is a suppression mechanism for the 2-body cross section
- All final stable particles are present
- The low energy part can be greatly enhanced

BACKUP ARGUMENTS

$1^{\rm st}$ Scenario

$1^{\rm st}$ Scenario

1^{st} Scenario

Hum

$1^{\rm st}$ Scenario

Z from W radiation, M = 3 TeV

$1^{\rm st}$ Scenario

Z from W radiation, M = 3 TeV

