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Established Dark Matter Properties

Dark matter clearly exists and is

massive

electrically neutral and colorless

cold

non-baryonic

stable very long-lived
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Dark Matter Stability – An Assumption

We do not know whether the dark matter particles are perfectly

stable – from the presence of dark matter in the Universe today we
can only infer stability on a cosmological timescale,

τDM > τuniverse ∼ 4 × 1017 s
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Approaches to Non-Gravitational Dark Matter Detection

Collider searches: SM SM → DM X

Direct detection: DM nucleus → DM nucleus

Indirect detection: DM DM → SM SM, DM → SM SM
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Some Examples of “Weakly” Unstable Dark Matter

Gravitino dark matter with R-parity violation
[Takayama, Yamaguchi ’00], [Buchmüller, Covi, Hamaguchi, Ibarra, Yanagida ’07]

[Ibarra, DT ’08], [Ishiwata, Matsumoto, Moroi ’08]

[Chen, Ji, Mohapatra, Nussinov, Zhang ’08, ’09]

[Buchmüller, Ibarra, Shindou, Takayama, DT ’09], [Bomark, Lola, Osland, Raklev ’10]

Hidden sector gauge bosons/gauginos
[Ibarra, Ringwald, Weniger ’08], [Ibarra, Ringwald, DT, Weniger ’09]

[Chen, Takahashi, Yanagida ’08, ’09]

Right-handed sneutrinos in models with Dirac masses
[Pospelov, Trott ’08]

Hidden sector fermions
[Hamaguchi, Shirai, Yanagida ’08]

[Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran ’08, ’09]

Hidden SU(2) vectors
[Arina, Hambye, Ibarra, Weniger ’09]

Bound states of strongly interacting particles
[Hamaguchi, Nakamura, Shirai, Yanagida ’08]

[Nardi, Sannino, Strumia ’08]
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Puzzling Results in Cosmic-Ray Antimatter

Several unexpected and puzzling results from telescopes PAMELA,
Fermi LAT, ATIC, ... over the last couple of years
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A Non-Gravitational Dark Matter Signature?

[Ibarra, DT, Weniger ’09]

The unidentified source of primary electrons/positrons must be local

and capable of producing highly energetic leptons → dark matter,
astrophysics?

The decay of “leptophilic” DM is a possible interpretation of the
cosmic lepton anomalies.

→ Motivation to find ways to test leptophilic dark matter.
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Radiative Dark Matter Effects

Radiative effects can have interesting effects, e.g. electroweak
bremsstrahlung [Berezinsky, Kachelriess, Ostapchenko ’02], [Ciafaloni, Comelli, Riotto,

Sala, Strumia, Urbano ’10] or “internal bremsstrahlung” for WIMP
annihilation [Bergström ’89], [Bergström, Bringmann, Edsjö ’08].

Even leptophilic DM models unavoidably generate hadrons at the
quantum level due to SU(2) invariance.

In addition, radiative two-body dark matter decays may give rise to
gamma-ray lines.

However, radiative effects usually suppressed compared to
leading-order processes by loop factors and powers of couplings
→ irrelevant?
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Gamma-Ray Lines from Fermionic Dark Matter

If the dark matter particles carry spin-1/2 and decay mostly into
charged leptons, the simplest decay mode is ψDM → ℓ+ℓ−N , where
N is a neutral fermion.

Assume that this is the only decay mode at leading order: simple
leptophilic toy model where the three-body decay is mediated by a
charged scalar Σ or a charged vector V .

ψDM(p)

ℓ(k3)

ℓ(k2)

Σ

N(k1)

ψDM(p)
ℓ(k3)

Σ ℓ(k2)

N(k1)
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Gamma-Ray Lines from Fermionic Dark Matter

At next-to-leading order, radiative two body-decays are induced by
closing the external charged lepton lines into a loop.

ψDM(p)
ℓ

Σ

N(k1)

ℓ

γ(k2)

ψDM

Σ

ℓ

N

Σ

γ

ψDM → γN : two-body decay creates monochromatic gamma rays at

Eγ =
mψDM

2

(

1 −
m2
N

m2
ψDM

)

→ observable in the gamma-ray sky?
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Gamma-Ray Lines in the Sky

[Fermi LAT gamma-ray sky map]

Lines constitute a well-defined signature and are relatively
straightforward to search for.

There is no background of monochromatic gamma rays from
astrophysical processes.

Thus, discovery of a line would be compelling evidence for
underlying fundamental particle physics process.
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Gamma-Ray Lines from Fermionic Dark Matter

What is the relative intensity of the radiative two-body decays?

For an intermediate scalar and chiral DM couplings, the ratio
between three- and two-body decay processes can be expressed as

Γ(ψDM → ℓ+ℓ−N)

Γ(ψDM → γN)
=

3αem

8π
×R× S

with 3αem/(8π) ≃ 10−3 and R, S typically O(1).

In this case, if the DM lifetime τDM ∼ 1026 sec, we have

Γ−1(ψDM → ℓ+ℓ−N) ∼ 1026 sec

⇒ Γ−1(ψDM → γN) ∼ 1029 sec.
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Kinematical Enhancement
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If ψDM and N have opposite CP parities, the kinematical factor S
can lead to significant relative enhancement of the radiative decay
mode when the mass of N is comparable to mDM.
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Gamma-Ray Lines from Scalar Dark Matter

φDM(p)

ℓ(k1)

ℓ(k2)

φDM(p)

ℓ

ℓ

γ(k1)

ℓ

γ(k2)

φDM

ℓ

ℓ

γ

ℓ

γ

In the case of scalar dark matter, the radiative decay widths are
proportional to a factor m2

ℓ/m
2
φDM

∼ 10−10 due to chirality
suppression
→ completely unobservable.
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Constraints from Line Searches
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[Garny, Ibarra, DT, Weniger ’10]

The negative search for gamma-ray lines by Fermi LAT constrains
the partial lifetime τ(DM → γν) at O(1029 sec) (!) for gamma-ray
energies up to a couple hundred GeV. [Abdo et al. ’10]
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Constraints from Line Searches
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[Garny, Ibarra, DT, Weniger ’10]

Imaging air Cherenkov telescopes can provide information at higher
energies from observations of sources (galaxies, clusters) or the
diffuse flux of electrons + gamma-rays.
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Constraints from Line Searches
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[Garny, Ibarra, DT, Weniger ’10]

Example: The decay ψDM → ℓ+ℓ−ν can simultaneously reproduce
PAMELA and Fermi.

Under favorable conditions, the preferred region of the parameter
space is not far from the observational limits for lower DM masses.
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Example: The decay ψDM → ℓ+ℓ−ν can simultaneously reproduce
PAMELA and Fermi

Under favorable conditions, the preferred region of the parameter
space is not far from the observational limits for lower DM masses
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Constraints from Line Searches
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Example: The decay ψDM → ℓ+ℓ−ν can simultaneously reproduce
PAMELA and Fermi.

Under favorable conditions, the preferred region of the parameter
space is not far from the observational limits for lower DM masses.
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Constraints from Line Searches
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[Garny, Ibarra, DT, Weniger ’10]

Relative intensity of the radiative decay can be enhanced by an order
of magnitude if the decay is mediated by a vector.

Present and future observations can constrain a relevant part of the
parameter space.
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Constraints from Line Searches
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[Garny, Ibarra, DT, Weniger ’10]

Using kinematical enhancement, one can construct scenarios where
gamma-ray line constraints decide the viability of models which can
reproduce the electron/positron measurements and are compatible
with antiproton results.
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Conclusions

Dark matter stability is by no means established, and effects of dark
matter decay may be observable in cosmic rays, gamma rays and
neutrinos.

Next-to-leading order decays can have interesting effects: even
purely leptophilic models can generate hadrons and monochromatic
lines.

In the case of fermionic dark matter, radiatively induced gamma-ray
lines from leptophilic decays may be observable in the future under
favorable conditions.

Some leptophilic models that are currently unconstrained can can be
tested using radiatively induced gamma-ray lines.
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Conclusions

Dark matter stability is by no means established, and effects of dark
matter decay may be observable in cosmic rays, gamma rays and
neutrinos.

Next-to-leading order decays can have interesting effects: even
purely leptophilic models can generate hadrons and monochromatic
lines.

In the case of fermionic dark matter, radiatively induced gamma-ray
lines from leptophilic decays may be observable in the future under
favorable conditions.

Some leptophilic models that are currently unconstrained can can be
tested using radiatively induced gamma-ray lines.

Thank you for your attention!
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