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● Any particle species whose production is associated with some thermal 
process and that decoupled while relativistic at relatively late times [T< 
O(100) MeV]. 

– Generic property: significant relativistic energy density before 
and around matter-radiation equality 

● If non-relativistic today: 

– Contribute to dark matter, but not all (otherwise inconsistent with 
hierarchical structure formation).

Hot relics: what are they?



  

Hot relics: which ones?

Guaranteed

Standard model neutrinos
Question: what is their 
energy density? 

Worth looking for
(also searched for by particle 
physics experiments)

Light (sub-eV to eV mass) 
sterile neutrinos; motivated 
by anomalies in neutrino 
experiments.

QCD axions (dependent on 
Peccei-Quinn scale); 
motivated by the strong CP 
problem.

Maybe 

Many BSM models predict 
hot relics.



  

● Disclaimer: We do not expect hot relics to make up all of the dark matter.

● We study them because of the possibility to constrain or detect physics of 
or beyond the standard model.

– Consistency checks against lab experiments.

● Even if you don't care about this particular sort of physics: 

– The presence of hot relics may shift the values of those 
cosmological parameters you care about, e.g., w

DE
.

Hot relics: why should we care?



  

1. Guaranteed hot relics: 
e, μ, τ neutrinos



  

● Prediction of the standard hot big bang.

● Process of decoupling fixed by weak interactions. 

– Temperature today:

– Number density per flavour:

– Energy density per flavour:

Cosmic neutrino background...
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If mν > 1 meVNeutrinos can be a significant component 
of the total dark matter content.



  

Neutrino dark matter...

Normal 
hierarchy Inverted 

hierarchy

matm
2 ~10−3 eV2 msun

2 ~10−5 eV2

● Neutrino oscillations:

min∑m~0.05 eV

min∑m~0.05 eVmin~0.1%

Mininum amount of 
neutrino dark matter



  

● Upper limit on neutrino masses from tritium β-decay:

Electron energy (keV)

me≡∑i ∣U ei∣
2mi

2
1/2

 2.2 eV

Large mixing means
 ∣U ei∣

2~O 0.11

max∑m~7 eVmax~12%

Lobashev [Troitsk] 2003 
Krauss et al. [Mainz] 2005



  

● At low redshifts, neutrinos become nonrelativistic:.

– But still have large thermal speed: 

→ hinder ν clustering on small scales.

● Free-streaming                                                                          
length scale    
& wavenumber:

Free-streaming neutrinos...
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● In turn, free-streaming (non-clustering) neutrinos slow down the growth of 
gravitational potential wells on scales λ << λFS or wavenumbers k >> kFS.

c

ν

c

c ν

ν

c

c cν ν c ν

Clustering → potential 
wells become deeper

Some time later...

Only CDM 
clusters

Both CDM and
neutrinos cluster

ν



  

● The presence of HDM slows down the growth of CDM perturbations at 
large wavenumbers k.

δcdm δcdm

CDM-only

CHDM

k k

Initial time... Some time later...

kFS(z=z
nr
)

Redshift at which neutrinos 
become nonrelativistic



  

CMB Galaxy 
clustering 
surveys

Lyman-α
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CMB

Lyman-α

h
2=∑ m

93 eV

Galaxy 
clustering 
surveys
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● Present constraints come 
mainly via the early ISW 
effect:

– γ decoupling: T ~ 0.26 eV.
– Equality at T ~ 1 eV. 

● A O(0.1-1) eV neutrino 
becomes nonrelativistic in the 
same time frame.

   

Neutrino effects on the CMB anisotropies...

∑ m1.3 eV 95%C.L.

Komatsu et al. 2010, Hannestad et al. 2010

WMAP7 only (ΛCDM+m
ν
):

∑ m=3×0.4eV=1.2 eV

∑ m=0



  

Present status...
WMAP7 only* 
Komatsu et al. 2010

WMAP7+SDSS-HPS *
Hannestad, Mirizzi, Raffelt
& Y3W 2010

WMAP5+SDSS-HPS 
+SN+HST
Reid et al. 2009

95% C.L. upper limit                   

WMAP5+Weak lensing*
Tereno et al. 2008 
Ichiki et al. 2008

(extended models)

* ΛCDM+m
ν



  arXiv:1103.5083 [astro-ph.CO]



  Abazajian et al. 1103.5083in combination with WMAP; 95% upper limits



  

2. Non-standard hot relics...



  

2a. Thermal QCD axions...



  

● A popular solution to the strong CP problem.

QCD axions and the PQ Mechanism...
Peccei & Quinn, 1977
Wilczek, 1978
Weinberg, 1978

E ~ fa
E ~ ΛQCD << fa

U(1)PQ explicitly broken 
by instanton effects at 
E ~ Λ

QCD
~ 200 MeV. 

Global U(1) spontaneously 
broken at E ~ f

a

Axion acquires 
a mass

La=
1
2
∂a

2−
s
8

a
f a
G G ma≈

z1 /2

1z
f m
f a

= 6.0 eV
f a /106 GeV

Peccei-Quinn scale

Axion mass z≡mu /md=0.553±0.043● Low energy effective theory:



  

QCD axion parameter space...

DirectDirect
searchsearch

      CDM CDM 
  (anthropic)(anthropic)

TeleTele
scopescopeExperimentsExperiments

Globular clustersGlobular clusters
(a-(a-γγ -coupling)-coupling)
Too manyToo many

eventsevents
Too muchToo much

energy lossenergy loss
SN 1987A (a-N-coupling)SN 1987A (a-N-coupling)

101033 101066 101099 10101212    
  [GeV]  f[GeV]  faa    

eVeVkeVkeV meVmeV μμeVeVmmaa

Too much hot dark matterToo much hot dark matter

CASTCAST ADMXADMX

This talk

      CDM CDM 
  (classic)(classic)

Stellar
evolution 
arguments



  

● If the PQ scale is low, then the coupling may be strong enough to produce 
a thermal axion background, decoupling after the QCD phase transition.

● Relevant scattering process:  

Thermal production of QCD axions...

La=
C a

f a f 
0  ∂
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 

−2   − ∂
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C a=
1− z

31 z 
≈0.094

Chang & Choi 1993
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Axion temperature today Axion number density today

Expect free-streaming
features that are 
qualitatively similar to
neutrinos, but not 
identical.

Hannestad, Mirizzi & Raffelt 2005

fs~4.2 1z
mh

2

T a
T  eV

m  Mpc

Axion free-streaming length



  

Effects on cosmological observables...

Hannestad, Mirizzi, Raffelt & Y3W 2010

cdm=0.112 =0 a=0

CDM

cdm=0.099 =0.013 a=0

∑m=3×0.4 eV=1.2eV

cdm=0.099 =0 a=0.013

ma=2.4eV

cdm=0.0498 =0 a=0.0622

ma=10 eV

LSS power spectrum



  Hannestad, Mirizzi, Raffelt & Y3W 2010

HPS =
Halo power
spectrum
(SDSS DR7)



  

Effects on cosmological observables...

Hannestad, Mirizzi, Raffelt & Y3W 2010

cdm=0.112 =0 a=0

CDM

cdm=0.099 =0.013 a=0

∑m=3×0.4 eV=1.2eV

cdm=0.099 =0 a=0.013

ma=2.4eV

cdm=0.0498 =0 a=0.0622

ma=10 eV

CMB TT



  Hannestad, Mirizzi, Raffelt & Y3W 2010



  

● Free-streaming behaviour is qualitatively similar to that of the neutrinos.

● But the two scenarios differ in the details.

– Shape of the matter power spectrum.

– Different signatures in the CMB and the LSS power spectrum.

● Can we eventually use these to distinguish between different hot relics??

  

Moral of the axion story...



  

2b. Searching for non-standard hot 
relics...



  

● The simplest phenomenological model is to represent any excess 
relativistic energy density in terms of extra species of massless neutrinos. 

Searching for extra hot relics in precision cosmology...

X=N eff  78 
2

15
T 

4=3.04 N eff  78 
2

15
T 

4

Komatsu [WMAP7] et al. 2010



  Hou, Keisler, Knox et al. 1104.2333

● The most recent 
analysis using 
WMAP7+ACT+ 
ACBAR+BAO+H

0 
finds 

N
eff

 = 3.04 is 
disfavoured at 98.4% 
confidence. 



  

● Primary effect of N
eff

: shifts 
epoch of equality.

● Secondary effect: enhances 
expansion rate at equality and 
hence Silk damping.

How it works...

Hou, Keisler, Knox et al. 1104.2333

Fixed z
eq

, ρ
b
, θ

s

1.

2.



  

Light (eV) sterile neutrinos as a candidate...

● Oscillation signals in LSND and MiniBooNE (anti-neutrino channel) 
conflict with the standard 3-neutrino interpretation of global neutrino 
oscillation data. 

● The simplest solution: introduce a fourth neutrino flavour.

– Must not couple to W, Z, or LEP would have seen it.

Fourth flavour = “Sterile neutrino”.

(e, μ, τ neutrinos = “Active neutrinos”.)

N =2.9840±0.0082 Z invisible decay width
Particle Data Group 2010



  

Kopp, Maltoni & 
Schwetz 1103.4570

Mention et al. 1101.2755

New reactor fluxes

Old reactor fluxes

“3+1 scenario”

● Tension between LSND/ 
MiniBooNE and reactor 
disappearance experiments.

● New analysis of reactor 
fluxes finds 3% higher mean 
flux.                                      
→ disappearance @98.6% 
confidence (old: 68% CL).

● “3+1” best-fit: m41
2 ~1 eV2

ms~1 eV

If lightest neutrino mass ~ 0 eV



  

● 3 active + 2 sterile scenarios fit 
even better.

Kopp, Maltoni & Schwetz 1103.4570

m41
2 ~0.47 eV2

m51
2 ~0.87 eV2

2/ dof=110.1 /130

m1~m2~m3 0 eV
ms1~0.7 eV
ms2~0.9 eV



  

● Production process is a combination of active-sterile neutrino oscillations 
and weak scattering of the active neutrinos. 

– Extent of sterile neutrino thermalisation depends sensitively on 
the square-mass splitting and the mixing matrix.

– Δm2 > 1 eV2 → complete thermalisation: same temperature and 
abundance as active neutrinos.*

● Caution: A full-scale 3+1 or 3+2 flavour oscillation+scattering 
thermalisation calculation is a very computationally demanding exercise.  

– No one has ever done it...
– * based on old momentum-averaged 2-flavour analyses. 

Sterile neutrino thermalisation...



  

● 3+1 thermalised sterile:

● 3+2 thermalised sterile:

 

Compatibility of 3+1 and 3+2 with cosmology...

Hamann, Hannestad, Raffelt, 
Tamborra & Y3W  2010

CMB+SDSS7+HST

68%

95%

99%

Number of sterile neutrinosM
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ms0.48 eV 95%C.I.

ms1ms20.9 eV 95%C.I.

ms~1 eV

ms1~0.7 eV
ms2~0.9 eVLab best-fit:

Lab best-fit:

Tension between experiment 
results and cosmology!



  

● How would other cosmological parameters have to change in order to 
accommodate two sterile neutrinos?

Suppose 1eV sterile neutrinos are for real...

Kristiansen & Elgaroy 1104.0704

No sterile

1 x 1 eV

2 x 1 eV

Cosmolgical constant 
disfavoured at > 95% 
confidence!

(wCDM+k+sterile)
(CMB+LSS+SN)



  

3. How to know more...



  

● The question of whether or not N
eff

 ~ 4 will be settled almost immediately 
with Planck!

Planck and N
eff

...

Bashinsky & Seljak 2004
Free Helium fraction



  

Planck and neutrino masses...

Currently disfavoured  
at 95% C.L.                 

ΛCDM+m
ν
 

wCDM+m
ν
+N

eff
+αPlanck 95%

sensitivities 
to neutrino 
masses

Perotto et al. 2006



  

Planck and neutrino masses...

Currently disfavoured  
at 95% C.L.                 

ΛCDM+m
ν
 

wCDM+m
ν
+N

eff
+αPlanck 95%

sensitivities 
to neutrino 
masses

Perotto et al. 2006

Reach of 
KATRIN

KATRIN main spectrometer



  
+Planck; 95% sensitivities Abazajian et al. 1103.5083



  

● Hot relics are still fun.

– With present data: 

– We can do even better in the future with forthcoming probes/new 
techniques.

● Question of the moment: are there extra hot relics beyond 3 standard 
model neutrinos?

– Planck will answer this soon!

Summary...

∑ mO 1 eV
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