Gravitational Wave Astronomy

Alberto Vecchio

University of Birmingham

Progress on Old and New Themes in Cosmology Avignon, 18th - 22nd April 2011

Outline

- Ongoing and future observational avenues:
 - Ground-based gravitational wave laser interferometers (LIGO/Virgo/GEO 600/...)
 - Pulsar Timing Arrays (PTAs)
 - Space-based gravitational wave laser interferometers
- Cosmology in the gravitational-wave observational window:
 - Binary systems: a new class of standard candles
 - Stochastic backgrounds from the early universe

GW spectrum

GW spectrum

GW spectrum

GW laser interferometers

GW interferometer in a nutshell

The global network of laser interferometers

Evolution of LIGO sensitivity

Beyond design sensitivity: (CONVIRGO eLIGO/Virgo+ (S6/VSR2/3)

Pulsar Timing Arrays

Pulsar Timing Arrays

Observable: timing residuals

FIG. 1.—*Top*: Theoretical timing residuals induced by G-waves from 3C 66B. The timing points are chosen to coincide with the actual timing residuals of PSR B1855+09. *Bottom*: The corresponding normalized Lomb periodogram.

(Jenet et al, 2004, 2006)

$$r(t) \simeq 26 \left(\frac{\mathcal{M}}{10^9 \, M_{\odot}}\right)^{5/3} \left(\frac{D}{100 \, \mathrm{Mpc}}\right)^{-1} \left(\frac{f}{5 \times 10^{-8} \, \mathrm{Hz}}\right)^{-1/3} (\mathrm{ms})$$

Cosmology with (direct) GW observations

- Binary systems of compact objects (black holes and/or neutron stars): a new class of standard candles (also known as "standard sirens")
- Stochastic background radiation

New class of standard candles: coalescing binaries

Binary systems

Measured signal

$h(t) = F_{+}(\alpha, \delta, \psi) h_{+}(t) + F_{x}(\alpha, \delta, \psi) h_{x}(t)$

- Polarization amplitudes h₊ (t) and h_x(t) contain full information about the physics
- Unknown parameters (9 for non-spinning binary systems, 15 for general spins, 17 if also eccentricity is present)
 - Physics: masses (2 parameters) & spins (6 parameters)
 - Geometry: luminosity distance (I parameter), location in the sky (2 parameters) and orbital plane orientation (2 parameters)
 - Time and phase at coalescence (2 parameters)
 - Eccentricity (2 parameters)

Example: $1.4~M_{\odot}$ - $100~M_{\odot}$

Stochastic backgrounds from the early universe

GWs and the early universe

(Battye and Shellard, arXiv:9604059)

(Very crude) sensitivity estimate for $h^2 \Omega_{gw}(f)$

	LIGO/ Virgo	aLIGO/ aVirgo	ET	"LISA"	BBO/ Decigo	PTA	I-PTA	SKA
10-100 Hz	I 0 ⁻⁶	I 0 ⁻⁸	I 0 -10					
0.1-1 Hz					I 0 -16			
I-I0 mHz				10-11				
I-I0 nHz						I 0 ⁻⁸	I O -10	10-12

(Very crude) sensitivity estimate for $h^2 \Omega_{gw}(f)$

	LIGO/ Virgo	aLIGO/ aVirgo	ET	"LISA"	BBO/ Decigo	PTA	I-PTA	SKA
10-100 Hz	now	2015 -	202?					
0.1-1 Hz					20??			
I-I0 mHz				2022+				
I-I0 nHz						now	2015 -	202?

Ground based observations

x 10⁻⁴⁸

Right ascension [hours]

How far could LIGO/Virgo See during S5/VSRI?

- LIGO S5: November 2005 October 2007
- One year of data at design sensitivity in triple coincidence
- VIRGOVSRI: last 5 months of the run

Detection rate

Expected detection rates

IFO	$Source^{a}$	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m high}$	$\dot{N}_{ m max}$
		yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^c
	IMBH-IMBH			10^{-4d}	10^{-3e}
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^b	300^c
	IMBH-IMBH			0.1^d	1^e

Abadie et al. (LSC and Virgo), CQG 27, 173001 (2010)

Mass search area

post-Newtonian approx. of inspiral full inspiral-merger-ringdown $\phi = -\frac{x^{-5/2}}{32\nu} \left\{ 1 + \left(\frac{3715}{1008} + \frac{55}{12}\nu\right)x - 10\pi x^{3/2} + \left(\frac{15293365}{1016064} + \frac{27145}{1008}\nu + \frac{3085}{144}\nu^2\right)x^2 \right\}$ waveforms $+\left(\frac{38645}{1344}-\frac{65}{16}\nu\right)\pi x^{5/2}\ln\left(\frac{x}{x_{0}}\right)$ 0.4 EOB Re(h22) R/M 0.2 NR Re(h₂₂) R/M $+ \left[\frac{12348611926451}{18776862720} - \frac{160}{3}\pi^2 - \frac{1712}{21}C - \frac{856}{21}\ln(16x) \right]$ 0.2 0.0 $+ \left(-\frac{15737765635}{12192768} + \frac{2255}{48}\pi^2 \right) \nu + \frac{76055}{6912}\nu^2 - \frac{127825}{5184}\nu^3 \right] x^3$ -0 -0.2 $+\left(\frac{77096675}{2032128}+\frac{378515}{12096}\nu-\frac{74045}{6048}\nu^2\right)\pi x^{7/2}+\mathcal{O}\left(\frac{1}{c^8}\right)\bigg\},$ -0.2 -0.4 3900 3950 4000 4050 1000 2000 3000 $\Delta \phi_h$ (rad) 0.16 $\Delta A / A$ 0.01 Blanchet LLR 2006 0.08 nass ((M_o) 0 -0.01 -0.08 1000 2000 3000 3900 3950 4000 4050 **High Mass** t/M t/M Search Region see Buonanno et al, 2009; Overlap region Ajith et al, 2008 Low Mass Search Region 25 1 35 100 mass (M₀)

The two body problem

Number of inspiral wave cycles (f>10Hz)

	$2 \times 1.4M_{\odot}$	$10M_\odot+1.4M_\odot$	$2 imes 10 M_{\odot}$
Newtonian order	16031	3576	602
1PN	441	213	59
1.5PN (dominant tail)	-211	-181	-51
2PN	9.9	9.8	4.1
2.5PN	-11.7	-20.0	-7.1
3PN	2.6	2.3	2.2
3.5PN	-0.9	-1.8	-0.8

Horizon Distance vs Total Mass

Abadie et al. (LSC and Virgo), PRD 82, 102001 (2010)

Upper-limit a factor ~ 10 higher than optimistic rate

Abadie et al. (LSC and Virgo), arXiv:1102.3781

eLIGO/Virgo+ Analysis in progress

Advanced LIGO

Expected detection rates

IFO	$Source^{a}$	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m high}$	$\dot{N}_{\rm max}$
		yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^c
	IMBH-IMBH			0.1^d	1^e

Abadie et al. (LSC and Virgo), CQG 27, 173001 (2010)

LIGO Australia?

Gingin facility

Decision will be made by Oct 2011

LCGT

 $h(\tau$

Binaries as standard candles

$$(t) \sim \text{angles} \times \frac{\mathcal{M}^{5/3} f(t)^{2/3}}{D_L} \cos \Phi(t; m_{1,2}, S_{1,2})$$

- The luminosity distance $D_L(z; H_0, \Omega_M, \Omega_\Lambda, \Omega_k, ...)$ is a direct observable
- However, the redshift z cannot be measured directly
- One needs z from an electro-magnetic counterpart (e.g. gamma-ray burst?) or from the association with the host galaxy
- The key idea was put forward over 20 years ago (Schutz 1986)

Distance measurements

Veitch and AV (2010)

Error box in the sky

this is just an example run, systematic studies are needed (and are in progress)

Sky resolution

Current network

Current network + instrument in Australia

PER AD REDUX ALTA

Measuring cosmological parameters

- "Poor" angular resolution may prevent optical identification (i.e. redshift)
- Degeneracies in parameter space my limit accuracy in distance measurements
- <u>Weak lensing</u> may be the ultimate limitation if there is a small number of detections
- Many papers (Hughes, Holz & Co), the issue is not settled

Nissanke et al, 2010

Example: Measuring H₀

Del Pozzo and AV, in preparation

Stochastic backgrounds from the early universe

Stochastic backgrounds

Spectrum:

$$\Omega_{\rm gw}(f) = \frac{1}{\rho_{\rm c}} \, \frac{d\rho_{\rm gw}(f)}{d\ln f}$$

Amplitude:

$$S^{1/2}(f) = 5.6 \times 10^{-22} \left[h_{100}^2 \Omega_{\rm gw}(f) \right]^{1/2} \left(\frac{f}{100 \,{\rm Hz}} \right)^{-3/2} \,{\rm Hz}^{-1/2}$$

Search approach

 Cross-correlation
 between outputs from pairs of instruments

$$\langle \tilde{s}_1^*(f)\tilde{s}_2(f)\rangle = \gamma(f)S_{\rm gw}(f)$$

 The geometry enters via the overlap reduction function that depends on orientation and separation of the instruments

 $s_1 = n_1 + h_1$

 $s_2 = n_2 + h_2$

Geometry: Geometry: overlap reduction function

S5 LIGO sensitivity

LIGO upper-limit vs nucleosynthesis bound

Constraining string models

Abbott et al, Nature **460**, 990 (2009)

Constraining the early universe evolution

$$\Omega_{\rm GW}(f) = A f^{\hat{\alpha}(f)} f^{\hat{n}_t(f)} r$$
$$\hat{\alpha}(f) = 2 \frac{3\hat{w}(f) - 1}{3\hat{w}(f) + 1}$$

Abbott et al, Nature **460**, 990 (2009)

Beyond isotropy

Abbott et al (LSC & Virgo Collaboration), PRD **76**, 082003 (2007)

Anisotropy: (S4) upper-limit

Abbott et al (LSC & Virgo Collaboration), PRD 76, 082003 (2007)

LSC

Pulsar Timing Arrays

Example: background from QCD phase transitions

Carpini, Durrer and Siemens (2010)

Foreground from SMBH binaries

Sesana, AV and Colacino (2008)

New upper-limit from EPTA

van Haasteren et al (EPTA), 2010 submitted

Resolving SMBH binaries

Sesana, AV and Volonteri (2009)

Parameter space

Lee et al, arXiv:1103.0115

PTA sky resolution

Distance error measurements: $\Delta D_L/D_L \sim I/SNR$ Sesana and AV, 2010; see also Corbin & Cornish arXiv:1008.1782; Lee et al, arXiv:1103.0115

Long(er) term future

Square Kilometre Array (SKA)

Space based laser interferometer

Einstein gravitationalwave Telescope (ET)

Conclusions

- It is highly likely (though not totally guaranteed) that in the next 5-to-10 years gravitational waves will be directly observed (by LIGO/Virgo/GEO/etc. and/or PTAs)
- Gravitational wave observations will provide an entirely new arena to test ideas in cosmology (and astrophysics, fundamental physics, ...)
- (In <u>my</u> opinion) gravitational wave cosmology won't happen any time soon, but when it does it may well provide one of biggest payoffs of gravitational-wave science