

The standard "model" for cosmology based on energy

$$rac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

An alternative model based on gravity

- Can acceleration be driven by GR modifications rather than a new component of stress-energy?
- Changes to the laws of gravitation affect the relationship between the geometry (metric) and density (matter) fields
- assume scalar degrees of freedom in the gravitational field
- two physically relevant scalar functions (or potentials)

$$ds^2 = a^2 \left[-(1+2\psi) d au^2 + (1-2\phi) dar{x}^2
ight]$$

- conformal Newtonian gauge
- time-time (time-like) metric potential Ψ
- space-space (space-like) metric potential Φ
- scale factor a
- conformal time τ
- spatial coordinate x

Modified Gravity Models

- assume dominant stress-energy component can be modeled as a non-relativistic perfect fluid
 - no pressure or anisotropic stress terms
- assume conservation of stress-energy
 - continuity equation
 - Euler equation
- left with two gravitational field equations to close the system
 - no consensus in field on how to parameterize!

$$-k^2 rac{A\phi + B\psi}{A + B} = 4\pi G \mu(k, a) ar{
ho}_m \Delta_m$$

 $\phi = \eta(k, a) \psi$

(e.g. Daniel et al. 2010; 1002.1962)

$$-k^{2}(\phi + \psi) = 8\pi G_{N}a^{2}\bar{\rho}_{m}\Delta_{m} \times \mathcal{G}(k, a)$$
$$-k^{2}\psi = 4\pi G_{N}a^{2}\bar{\rho}_{m}\Delta_{m} \times \mathcal{V}(k, a)$$

(e.g. Linder 2011; arXiv:1103.0282)

need two functions: expansion and growth rates

Galaxy Surveys can constrain model choices

What are the constituents of matter?
Why is the Universe homogeneous on large scales?

Relationship between CMB and LSS clustering

neutrino mass from comoving clustering

WMAP 7 year data:

Dunkley et al. (2009: ApJS,180, 306)

LSS can help through comoving shape and breaking CMB projection degeneracies

neutrino mass

For current SDSS data: red and blue galaxies give constraints that are $\sim 1\sigma$ apart, using shape of P(k)

Full fit giving parameters of inflation

Use luminous red galaxies (LRGs) to extract the halo power spectrum and model the shape to constrain cosmological models

parameter	ΛCDM	οΛCDΜ	wCDM	owCDM
Ω_m	0.289 ± 0.019	0.309 ± 0.025	0.328 ± 0.037	0.306 ± 0.050
H_0	69.4 ± 1.6	66.0 ± 2.7	64.3 ± 4.1	$66.7^{+5.9}_{-5.6}$
$D_V(0.35)$	1349 ± 23	1415 ± 49	1398 ± 45	1424 ± 49
$r_s/D_V(0.35)$	0.1125 ± 0.0023	0.1084 ± 0.0034	0.1094 ± 0.0032	$0.1078^{+0.0033}_{-0.0034}$
Ω_k	-	$-0.0114^{+0.0076}_{-0.0077}$	-	-0.009 ± 0.012
\boldsymbol{w}	-	-	-0.79 ± 0.15	-1.06 ± 0.38
Ω_{Λ}	0.711 ± 0.019	0.703 ± 0.021	0.672 ± 0.037	$0.703^{+0.057}_{-0.058}$
Age (Gyr)	13.73 ± 0.13	14.25 ± 0.37	13.87 ± 0.17	14.27 ± 0.52
$\Omega_{ m tot}$	-	$1.0114^{+0.0077}_{-0.0076}$	-	1.009 ± 0.012
$100\Omega_b h^2$	2.272 ± 0.058	2.274 ± 0.059	$2.293^{+0.062}_{-0.063}$	$2.279_{-0.065}^{+0.066}$
$\Omega_c h^2$	$0.1161^{+0.0039}_{-0.0038}$	0.1110 ± 0.0052	$0.1112^{+0.0056}_{-0.0057}$	$0.1103^{+0.0055}_{-0.0054}$
au	0.084 ± 0.016	0.089 ± 0.017	0.088 ± 0.017	0.088 ± 0.017
n_s	0.961 ± 0.013	0.962 ± 0.014	0.969 ± 0.015	0.965 ± 0.016
$\ln(10^{10}A_{05})$	$3.080^{+0.036}_{-0.037}$	3.068 ± 0.040	$3.071^{+0.040}_{-0.039}$	3.064 ± 0.041
σ_8	0.824 ± 0.025	$\boldsymbol{0.796 \pm 0.032}$	0.735 ± 0.073	0.79 ± 0.11

Why do we see an accelerating Universe?

Using clustering to measure geometry

Sunyaev & Zel'dovich (1970); Peebles & Yu (1970); Doroshkevitch, Sunyaev & Zel'dovich (1978); Cooray, Hu, Huterer & Joffre (2001); Eisenstein (2003); Seo & Eisenstein (2003); Blake & Glazebrook (2003); Hu & Haiman (2003); ...

Baryon Acoustic Oscillations (BAO)

(images from Martin White)

To first approximation, comoving BAO wavelength is determined by the comoving sound horizon at recombination

$$r_s = rac{1}{H_0 \Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a + a_{eq})^{1/2}}$$

comoving sound horizon ~110h-1Mpc, BAO wavelength 0.06hMpc-1

projection onto the observed galaxy distribution depends on

$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

BAO in SDSS DR7 + 2dFGRS power spectra

- Combine 2dFGRS, SDSS DR7 LRG and SDSS Main Galaxy samples
- split into redshift slices and fit P(k) with model comprising smooth fit × BAO
- results can be written as independent constraints on a distance measure to z=0.275 and a tilt around this

$$r_s(z_d)/D_V(0.275) = 0.1390 \pm 0.0037 (2.7\%)$$

 $D_V(0.35)/D_V(0.2) = 1.736 \pm 0.065$

 consistent with ΛCDM models at 1.1σ when combined with WMAP5

Comparing BAO constraints vs other data

ACDM models with curvature

flat wCDM models

- Union supernovae
- WMAP 5year
- SDSS BAO Constraint on $r_s(z_d)/D_V(0.2) \& r_s(z_d)/D_V(0.35)$

How does structure form within this background?

We cannot see growth of structure directly from galaxies

Redshift-Space Distortions

When we measure the position of a galaxy, we measure its position in redshift-space; this differs from the real-space because of its peculiar velocity:

$$s(r) = r - v_r(r)\hat{r}$$

Where s and r are positions in redshiftand real-space and v_r is the peculiar velocity in the radial direction

Redshift-Space Distortions

Image of SDSS, from U. Chicago

Redshift-Space Distortions

density

Galaxies act as test particles

Galaxies act as test particles with the flow of matter

Underdensity

Actual shape

Apparent shape

density

(viewed from below)

On large-scales, the distribution of galaxy velocities is unbiased provided that the positions of galaxies fully sample the velocity field

X

If fact, we can expect a small peak velocity-bias due to motion of peaks in Gaussian random fields

Standard measurements provide good test of models

assume: irrotational velocity field due to structure growth, plane-parallel approximation, linear deterministic density & velocity bias, first order in δ , θ

Normalise RSD to σ_{v} assume continuity, scale-independent growth

Standard assumption: $b_v=1$ (current simulations limit this to a 10% effect).

$$egin{array}{ll} f &\equiv & rac{d \log G}{d \log a} \ f \sigma_8 & \propto & rac{d G}{d \log a} \ G &= & rac{\delta(z, ext{mass})}{\delta(0, ext{mass})} \end{array}$$

Degeneracies - RSD vs Alcock-Palczynski

RSD distortion resembles distortion obtained by applying wrong distance-redshift relation through D_AH (Alcock-Palczynski effect)

Undertaking a robust analysis

Consider:

- Wide-angle effects
- Non-linear growth of structure
- Fingers-of-God
- Non-Gaussian Likelihood

Model	Variable	Scales less than 60 Mpc/h	Scales up to 200 Mpc/h
wCDM	$b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2)$	1.4949 ± 0.0772 1.5316 ± 0.0717	$\begin{array}{c} 1.5175 \pm 0.0760 \\ 1.57435 \pm 0.0672 \end{array}$
γ	$b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2) \ \gamma$	1.5462 ± 0.0911 1.5522 ± 0.0916 0.6545 ± 0.1100	1.6098 ± 0.0840 1.5882 ± 0.0727 0.6007 ± 0.1206
Free growth	$b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2) \ f(z_1)\sigma_8(z_1) \ f(z_2)\sigma_8(z_2)$	1.4733 ± 0.0640 1.4557 ± 0.0496 0.3930 ± 0.0457 0.4328 ± 0.0370	1.4388 ± 0.0619 1.5038 ± 0.0436 0.3481 ± 0.0594 0.4522 ± 0.0418

Samushia et al 2011: arXiv:1102.1014

Future surveys

Dark Energy Survey (DES)

- New wide-field camera for the 4m Blanco telescope
- Currently being moved from Fermilab to site,
 Survey due to start autumn 2011
- $\Omega = 5,000 \text{deg} 2$
- multi-colour optical imaging (g,r,i,z) with link to IR data from VISTA hemisphere survey
- 300,000,000 galaxies
- Aim is to constrain dark energy using 4 probes LSS/BAO, weak lensing, supernovae cluster number density
- Redshifts based on photometry
 weak radial measurements
 weak redshift-space distortions
- See also: Pan-STARRS, VST-VISTA, SkyMapper

VIMOS Public Extragalactic Redshift Survey (VIPERS)

- Uses upgraded VIMOS on VLT
- $\Omega = 24 \text{deg}^2$
- 100,000 galaxies
- emission line galaxies: 0.5<z<1.0
- insufficient volume for BAO measurement
- Unique redshift-space distortion science
- 18,500 redshifts from pre-upgrade data
- expect ~10,000 redshifts this season
- see also: FMOS surveys

Baryon Oscillation Spectroscopic Survey (BOSS)

- New fibre-fed spectroscope now on the 2.5m
 SDSS telescope
- $\Omega = 10,000 \text{deg}^2$
- 1,500,000 galaxies
- 150,000 quasars
- LRGs : z ~ 0.1 0.7 (direct BAO)
- QSOs : $z \sim 2.1 3.0$ (BAO from Ly- α forest)

0.1<z<0.3: 1% d_A, 1.8% H

0.4<z<0.7: 1% d_△, 1.8% H

z~2.5: 1.5% d_A, 1.2% H

- Cosmic variance limited to $z \sim 0.6$: as good as LSS mapping will get with a single ground based telescope
- Leverage existing SDSS hardware & software where possible: part of SDSS-III
- Sufficient funding is in place and project is 1 year into 5 year duration
- All imaging data now public (DR8 12/01/11)
- See also: WiggleZ

CGPortsmouth

BigBOSS

- New fibre-fed spectroscope proposed for 4m
 Mayall telescope
- NOAO endorsement following proposal evaluation
- $\Omega = 14,000 \text{deg}^2$
- 20,000,000 galaxies (direct BAO)
- 600,000 quasars (BAO from Ly- α forest)
- LRGs: z ~ 0.1 1.0
- ELGs: z~0.5-1.7
- QSOs: $40/\text{deg}^2$, $z \sim 2.1 3.0$
 - z<0.5: 0.9% d_A, 1.5% H
 - 0.5<z<1: 0.4% d_A, 0.6% H
 - z>1: 0.6% d_a, 0.8% H
- Cosmic variance limited to z ~ 1.4
- See also: DESpec, WEAVE, VXMS, other instruments on 4m-class telescopes?

Euclid

- ESA Cosmic Vision satellite proposal (600M€, M-class mission)
- 5 year mission, L2 orbit
- 1.2m primary mirror, 0.5 sq. deg FOV
- $\Omega = 20,000 \text{deg}^2$ imaging and spectroscopy
- slitless spectroscopy:
 - 100,000,000 galaxies (direct BAO)
 - ELGs (H-alpha emitters): z~0.5-2.1
- imaging:
 - deep broad-band optical + 3 NIR images
 - 2,900,000,000 galaxies (for WL analysis)
 - photometric redshifts
- Space-base gives robustness to systematics
- Final down-selection due mid 2011
- nominal 2017 launch date
- See also: LSST, WFIRST, SKA

Current large-scale galaxy clustering measurements

SDSS LRGs at z~0.35

The largest volume of the Universe currently mapped

Total effective volume $V_{eff} = 0.26 \text{ Gpc}^3 \text{h}^{-3}$

Power spectrum gives amplitude of Fourier modes, quantifying clustering strength on different scales

Predicted galaxy clustering measurements by Euclid

20% of the Euclid data, assuming the slitless baseline at z~1

Total effective volume (of Euclid) $V_{eff} = 19.7 \; Gpc^3h^{-3}$

Current BAO constraints vs other data

ACDM models with curvature

flat wCDM models

- Union supernovae
- WMAP 5year
- SDSS-II BAO Constraint on $r_s(z_d)/D_v(0.2) \& r_s(z_d)/D_v(0.35)$

How does Euclid BAO compare?

ACDM models with curvature

flat wCDM models

- Union supernovae
- WMAP 5year
- SDSS-II BAO Constraint on $r_s(z_d)/D_v(0.2) \& r_s(z_d)/D_v(0.35)$

Predicted BAO constraints

Predicted RSD Constraints

Code to estimate errors on $f\sigma_8$ is available from:

http://mwhite.berkeley.edu/Redshift

CG

Summary

- Galaxy clustering will help to answer remaining questions for astrophysical and cosmological models
- Shape of the power spectrum
 - measures galaxy properties (e.g. faint red galaxies)
 - neutrino masses (current systematic limit)
 - models of inflation
- Baryon acoustic oscillations
 - sets geometrical constraints on evolution
- Redshift-space distortions
 - avoids density bias galaxies act as test particles
 - structure formation test so complementary to geometrical tests
 - similar to weak lensing but tests only temporal metric fluctuations
- Future surveys
 - next generation underway giving an order of magnitude better constraints
 - many different avenues being explored for future projects
 - exciting developments over the next 10—20 years