The standard "model" for cosmology based on energy $$rac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$ ## An alternative model based on gravity - Can acceleration be driven by GR modifications rather than a new component of stress-energy? - Changes to the laws of gravitation affect the relationship between the geometry (metric) and density (matter) fields - assume scalar degrees of freedom in the gravitational field - two physically relevant scalar functions (or potentials) $$ds^2 = a^2 \left[-(1+2\psi) d au^2 + (1-2\phi) dar{x}^2 ight]$$ - conformal Newtonian gauge - time-time (time-like) metric potential Ψ - space-space (space-like) metric potential Φ - scale factor a - conformal time τ - spatial coordinate x #### **Modified Gravity Models** - assume dominant stress-energy component can be modeled as a non-relativistic perfect fluid - no pressure or anisotropic stress terms - assume conservation of stress-energy - continuity equation - Euler equation - left with two gravitational field equations to close the system - no consensus in field on how to parameterize! $$-k^2 rac{A\phi + B\psi}{A + B} = 4\pi G \mu(k, a) ar{ ho}_m \Delta_m$$ $\phi = \eta(k, a) \psi$ (e.g. Daniel et al. 2010; 1002.1962) $$-k^{2}(\phi + \psi) = 8\pi G_{N}a^{2}\bar{\rho}_{m}\Delta_{m} \times \mathcal{G}(k, a)$$ $$-k^{2}\psi = 4\pi G_{N}a^{2}\bar{\rho}_{m}\Delta_{m} \times \mathcal{V}(k, a)$$ (e.g. Linder 2011; arXiv:1103.0282) need two functions: expansion and growth rates #### **Galaxy Surveys can constrain model choices** What are the constituents of matter? Why is the Universe homogeneous on large scales? # Relationship between CMB and LSS clustering ## neutrino mass from comoving clustering WMAP 7 year data: Dunkley et al. (2009: ApJS,180, 306) LSS can help through comoving shape and breaking CMB projection degeneracies #### neutrino mass For current SDSS data: red and blue galaxies give constraints that are $\sim 1\sigma$ apart, using shape of P(k) # Full fit giving parameters of inflation Use luminous red galaxies (LRGs) to extract the halo power spectrum and model the shape to constrain cosmological models | parameter | ΛCDM | οΛCDΜ | wCDM | owCDM | |----------------------|------------------------------|--------------------------------|------------------------------|------------------------------| | Ω_m | 0.289 ± 0.019 | 0.309 ± 0.025 | 0.328 ± 0.037 | 0.306 ± 0.050 | | H_0 | 69.4 ± 1.6 | 66.0 ± 2.7 | 64.3 ± 4.1 | $66.7^{+5.9}_{-5.6}$ | | $D_V(0.35)$ | 1349 ± 23 | 1415 ± 49 | 1398 ± 45 | 1424 ± 49 | | $r_s/D_V(0.35)$ | 0.1125 ± 0.0023 | 0.1084 ± 0.0034 | 0.1094 ± 0.0032 | $0.1078^{+0.0033}_{-0.0034}$ | | Ω_k | - | $-0.0114^{+0.0076}_{-0.0077}$ | - | -0.009 ± 0.012 | | \boldsymbol{w} | - | - | -0.79 ± 0.15 | -1.06 ± 0.38 | | Ω_{Λ} | 0.711 ± 0.019 | 0.703 ± 0.021 | 0.672 ± 0.037 | $0.703^{+0.057}_{-0.058}$ | | Age (Gyr) | 13.73 ± 0.13 | 14.25 ± 0.37 | 13.87 ± 0.17 | 14.27 ± 0.52 | | $\Omega_{ m tot}$ | - | $1.0114^{+0.0077}_{-0.0076}$ | - | 1.009 ± 0.012 | | $100\Omega_b h^2$ | 2.272 ± 0.058 | 2.274 ± 0.059 | $2.293^{+0.062}_{-0.063}$ | $2.279_{-0.065}^{+0.066}$ | | $\Omega_c h^2$ | $0.1161^{+0.0039}_{-0.0038}$ | 0.1110 ± 0.0052 | $0.1112^{+0.0056}_{-0.0057}$ | $0.1103^{+0.0055}_{-0.0054}$ | | au | 0.084 ± 0.016 | 0.089 ± 0.017 | 0.088 ± 0.017 | 0.088 ± 0.017 | | n_s | 0.961 ± 0.013 | 0.962 ± 0.014 | 0.969 ± 0.015 | 0.965 ± 0.016 | | $\ln(10^{10}A_{05})$ | $3.080^{+0.036}_{-0.037}$ | 3.068 ± 0.040 | $3.071^{+0.040}_{-0.039}$ | 3.064 ± 0.041 | | σ_8 | 0.824 ± 0.025 | $\boldsymbol{0.796 \pm 0.032}$ | 0.735 ± 0.073 | 0.79 ± 0.11 | Why do we see an accelerating Universe? # Using clustering to measure geometry Sunyaev & Zel'dovich (1970); Peebles & Yu (1970); Doroshkevitch, Sunyaev & Zel'dovich (1978); Cooray, Hu, Huterer & Joffre (2001); Eisenstein (2003); Seo & Eisenstein (2003); Blake & Glazebrook (2003); Hu & Haiman (2003); ... ### **Baryon Acoustic Oscillations (BAO)** (images from Martin White) To first approximation, comoving BAO wavelength is determined by the comoving sound horizon at recombination $$r_s = rac{1}{H_0 \Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a + a_{eq})^{1/2}}$$ comoving sound horizon ~110h-1Mpc, BAO wavelength 0.06hMpc-1 projection onto the observed galaxy distribution depends on $$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$ #### **BAO in SDSS DR7 + 2dFGRS power spectra** - Combine 2dFGRS, SDSS DR7 LRG and SDSS Main Galaxy samples - split into redshift slices and fit P(k) with model comprising smooth fit × BAO - results can be written as independent constraints on a distance measure to z=0.275 and a tilt around this $$r_s(z_d)/D_V(0.275) = 0.1390 \pm 0.0037 (2.7\%)$$ $D_V(0.35)/D_V(0.2) = 1.736 \pm 0.065$ consistent with ΛCDM models at 1.1σ when combined with WMAP5 # Comparing BAO constraints vs other data #### **ACDM** models with curvature #### flat wCDM models - Union supernovae - WMAP 5year - SDSS BAO Constraint on $r_s(z_d)/D_V(0.2) \& r_s(z_d)/D_V(0.35)$ How does structure form within this background? # We cannot see growth of structure directly from galaxies #### **Redshift-Space Distortions** When we measure the position of a galaxy, we measure its position in redshift-space; this differs from the real-space because of its peculiar velocity: $$s(r) = r - v_r(r)\hat{r}$$ Where s and r are positions in redshiftand real-space and v_r is the peculiar velocity in the radial direction # **Redshift-Space Distortions** Image of SDSS, from U. Chicago # **Redshift-Space Distortions** density #### Galaxies act as test particles Galaxies act as test particles with the flow of matter Underdensity Actual shape Apparent shape density (viewed from below) On large-scales, the distribution of galaxy velocities is unbiased provided that the positions of galaxies fully sample the velocity field X If fact, we can expect a small peak velocity-bias due to motion of peaks in Gaussian random fields ### Standard measurements provide good test of models assume: irrotational velocity field due to structure growth, plane-parallel approximation, linear deterministic density & velocity bias, first order in δ , θ Normalise RSD to σ_{v} assume continuity, scale-independent growth Standard assumption: $b_v=1$ (current simulations limit this to a 10% effect). $$egin{array}{ll} f &\equiv & rac{d \log G}{d \log a} \ f \sigma_8 & \propto & rac{d G}{d \log a} \ G &= & rac{\delta(z, ext{mass})}{\delta(0, ext{mass})} \end{array}$$ # Degeneracies - RSD vs Alcock-Palczynski RSD distortion resembles distortion obtained by applying wrong distance-redshift relation through D_AH (Alcock-Palczynski effect) # **Undertaking a robust analysis** #### Consider: - Wide-angle effects - Non-linear growth of structure - Fingers-of-God - Non-Gaussian Likelihood | Model | Variable | Scales less than 60 Mpc/h | Scales up to 200 Mpc/h | |-------------|---|---|---| | wCDM | $b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2)$ | 1.4949 ± 0.0772
1.5316 ± 0.0717 | $\begin{array}{c} 1.5175 \pm 0.0760 \\ 1.57435 \pm 0.0672 \end{array}$ | | γ | $b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2) \ \gamma$ | 1.5462 ± 0.0911 1.5522 ± 0.0916 0.6545 ± 0.1100 | 1.6098 ± 0.0840 1.5882 ± 0.0727 0.6007 ± 0.1206 | | Free growth | $b(z_1)\sigma_8(z_1) \ b(z_2)\sigma_8(z_2) \ f(z_1)\sigma_8(z_1) \ f(z_2)\sigma_8(z_2)$ | 1.4733 ± 0.0640 1.4557 ± 0.0496 0.3930 ± 0.0457 0.4328 ± 0.0370 | 1.4388 ± 0.0619 1.5038 ± 0.0436 0.3481 ± 0.0594 0.4522 ± 0.0418 | Samushia et al 2011: arXiv:1102.1014 # Future surveys #### Dark Energy Survey (DES) - New wide-field camera for the 4m Blanco telescope - Currently being moved from Fermilab to site, Survey due to start autumn 2011 - $\Omega = 5,000 \text{deg} 2$ - multi-colour optical imaging (g,r,i,z) with link to IR data from VISTA hemisphere survey - 300,000,000 galaxies - Aim is to constrain dark energy using 4 probes LSS/BAO, weak lensing, supernovae cluster number density - Redshifts based on photometry weak radial measurements weak redshift-space distortions - See also: Pan-STARRS, VST-VISTA, SkyMapper # **VIMOS Public Extragalactic Redshift Survey (VIPERS)** - Uses upgraded VIMOS on VLT - $\Omega = 24 \text{deg}^2$ - 100,000 galaxies - emission line galaxies: 0.5<z<1.0 - insufficient volume for BAO measurement - Unique redshift-space distortion science - 18,500 redshifts from pre-upgrade data - expect ~10,000 redshifts this season - see also: FMOS surveys # **Baryon Oscillation Spectroscopic Survey (BOSS)** - New fibre-fed spectroscope now on the 2.5m SDSS telescope - $\Omega = 10,000 \text{deg}^2$ - 1,500,000 galaxies - 150,000 quasars - LRGs : z ~ 0.1 0.7 (direct BAO) - QSOs : $z \sim 2.1 3.0$ (BAO from Ly- α forest) 0.1<z<0.3: 1% d_A, 1.8% H 0.4<z<0.7: 1% d_△, 1.8% H z~2.5: 1.5% d_A, 1.2% H - Cosmic variance limited to $z \sim 0.6$: as good as LSS mapping will get with a single ground based telescope - Leverage existing SDSS hardware & software where possible: part of SDSS-III - Sufficient funding is in place and project is 1 year into 5 year duration - All imaging data now public (DR8 12/01/11) - See also: WiggleZ # **CG**Portsmouth # **BigBOSS** - New fibre-fed spectroscope proposed for 4m Mayall telescope - NOAO endorsement following proposal evaluation - $\Omega = 14,000 \text{deg}^2$ - 20,000,000 galaxies (direct BAO) - 600,000 quasars (BAO from Ly- α forest) - LRGs: z ~ 0.1 1.0 - ELGs: z~0.5-1.7 - QSOs: $40/\text{deg}^2$, $z \sim 2.1 3.0$ - z<0.5: 0.9% d_A, 1.5% H - 0.5<z<1: 0.4% d_A, 0.6% H - z>1: 0.6% d_a, 0.8% H - Cosmic variance limited to z ~ 1.4 - See also: DESpec, WEAVE, VXMS, other instruments on 4m-class telescopes? #### **Euclid** - ESA Cosmic Vision satellite proposal (600M€, M-class mission) - 5 year mission, L2 orbit - 1.2m primary mirror, 0.5 sq. deg FOV - $\Omega = 20,000 \text{deg}^2$ imaging and spectroscopy - slitless spectroscopy: - 100,000,000 galaxies (direct BAO) - ELGs (H-alpha emitters): z~0.5-2.1 - imaging: - deep broad-band optical + 3 NIR images - 2,900,000,000 galaxies (for WL analysis) - photometric redshifts - Space-base gives robustness to systematics - Final down-selection due mid 2011 - nominal 2017 launch date - See also: LSST, WFIRST, SKA #### **Current large-scale galaxy clustering measurements** SDSS LRGs at z~0.35 The largest volume of the Universe currently mapped Total effective volume $V_{eff} = 0.26 \text{ Gpc}^3 \text{h}^{-3}$ Power spectrum gives amplitude of Fourier modes, quantifying clustering strength on different scales # Predicted galaxy clustering measurements by Euclid 20% of the Euclid data, assuming the slitless baseline at z~1 Total effective volume (of Euclid) $V_{eff} = 19.7 \; Gpc^3h^{-3}$ #### **Current BAO constraints vs other data** **ACDM** models with curvature flat wCDM models - Union supernovae - WMAP 5year - SDSS-II BAO Constraint on $r_s(z_d)/D_v(0.2) \& r_s(z_d)/D_v(0.35)$ # **How does Euclid BAO compare?** **ACDM** models with curvature flat wCDM models - Union supernovae - WMAP 5year - SDSS-II BAO Constraint on $r_s(z_d)/D_v(0.2) \& r_s(z_d)/D_v(0.35)$ #### **Predicted BAO constraints** #### **Predicted RSD Constraints** Code to estimate errors on $f\sigma_8$ is available from: http://mwhite.berkeley.edu/Redshift # CG #### **Summary** - Galaxy clustering will help to answer remaining questions for astrophysical and cosmological models - Shape of the power spectrum - measures galaxy properties (e.g. faint red galaxies) - neutrino masses (current systematic limit) - models of inflation - Baryon acoustic oscillations - sets geometrical constraints on evolution - Redshift-space distortions - avoids density bias galaxies act as test particles - structure formation test so complementary to geometrical tests - similar to weak lensing but tests only temporal metric fluctuations - Future surveys - next generation underway giving an order of magnitude better constraints - many different avenues being explored for future projects - exciting developments over the next 10—20 years