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The formation and evolution of structures is a very complex 
phenomenon. 

Clustering properties of DM haloes (e.g. mass function) can be 
sensitive probes of NG and will be tested in the near future.

At present, quantitative knowledge comes mainly from N-body sims.

A full theoretical understanding is still lacking. A successful theory of 
structure formation must be able to make predictions.
Need for an analytical control.

Focus on:
analytical description of the formation of DM haloes and impact of NG.
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Excursion Set Theory

Introduction
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It allows to map the statistics of initial conditions with the 
subsequent formation of structures.

Smooth out the density pert.                on a sphere of radius R

Study the evolution of δ as a function of R

Excursion Set Theory
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[Bond, Cole, Efstathiou, Kaiser 1991]
[Peacock, Heavens 1990]
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δ =
δρ

ρ

R

δ(R,x) =

�
d3x� W (|x− x�| , R) δ(x�)

At R=∞, δ(R)=0. 
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It allows to map the statistics of initial conditions with the 
subsequent formation of structures.

Smooth out the density pert.                on a sphere of radius R

Study the evolution of δ as a function of R

δ =
δρ

ρ
δ(R,x) =

�
d3x� W (|x− x�| , R) δ(x�)

At R=∞, δ(R)=0. Lowering R, 
δ(R) evolves stochastically and 
performs a random walk.

[Bond, Cole, Efstathiou, Kaiser 1991]
[Peacock, Heavens 1990]
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At R=∞, δ(R)=0. Lowering R, 
δ(R) evolves stochastically and 
performs a random walk.

Use S= σ2(R) as “time”. 
S increases as R decreases.

13

FIG. 2: Three examples of random walks of δ(S) assuming each s step is independent as in the case

of a sharp k-space window function. The axes are arbitrary. The horizontal dotted line represents

some threshold value δc. Notice that trajectories may penetrate the “barrier” at δc many times.

then fall below δc by ∆S has not yet been accounted for.

Consider now, relating the distribution of δ at one value of the smoothing scale Π(δ, S)

to the distribution on a subsequent step Π(δ, S + ∆S) (smaller smoothing scale, larger S).

This is

Π(δ, S + ∆S) =
∫

d(∆δ) Ψ(∆δ; ∆S)Π(δ − ∆δ, S). (21)

Taylor expanding Eq. (21) for small transitions, keeping terms up to (∆δ2), and integrating

each term yields
∂Π

∂S
= lim

∆S→0

(

〈(∆δ)2〉
2∆S

∂2Π

∂δ2
− 〈∆δ〉

∆S

∂Π

∂δ

)

. (22)

Using the fact that the transition probability is a Gaussian with 〈∆δ〉 = 0 and 〈(∆δ)2〉 = ∆S

reveals
∂Π

∂S
=

1

2

∂2Π

∂δ2
(23)

as the relation governing the evolution of the probability distribution Π with smoothing

It allows to map the statistics of initial conditions with the 
subsequent formation of structures.

Smooth out the density pert.                on a sphere of radius R

Study the evolution of δ as a function of R

δ =
δρ

ρ
δ(R,x) =

�
d3x� W (|x− x�| , R) δ(x�)

[Bond, Cole, Efstathiou, Kaiser 1991]
[Peacock, Heavens 1990]
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to the distribution on a subsequent step Π(δ, S + ∆S) (smaller smoothing scale, larger S).
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∫

d(∆δ) Ψ(∆δ; ∆S)Π(δ − ∆δ, S). (21)
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reveals
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=

1

2

∂2Π

∂δ2
(23)

as the relation governing the evolution of the probability distribution Π with smoothing
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(Langevin eq.)
“noise”

∂δ(S)

∂S
= η(S)

Ex: for sharp k-space filter
�η(S1)η(S2)� = δD(S1 − S2)

“white noise”
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Window function 
(“filter”)

stochastic 
variable

δ(R,x = 0) =

�
d3k

(2π)3
δ̃k �W (k, R)
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as the relation governing the evolution of the probability distribution Π with smoothing
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Halo formation probability 
is mapped into a first - 
passage time problem
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A region collapses if it is dense enough: 
when δ crosses δc the first time 

(Langevin eq.)
“noise”

∂δ(S)

∂S
= η(S)

Window function 
(“filter”)

stochastic 
variable

δ(R,x = 0) =

�
d3k

(2π)3
δ̃k �W (k, R)



Knowledge of Π solves the problem and allows computation 
of the mass function

Problem: find the probability that a particle subject to a random 
walk passes for the first time through a given point
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F(S) = − ∂

∂S

� δc

−∞
dδ Π(δ, S)

prob. that the density contrast 
arrives for the first time at δ in 
a time S 

number of trajectories
that did not cross the 
barrier before SFirst-crossing rate:

Halo mass function:
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dn

dM
dM =

ρ

M
F(S)

����
dS

dM

���� dM

Π(δ, S): 
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1. Top-hat filter in k-space: 

2. Spherical collapse  (δc)

3. Gaussian initial conditions

Assumptions:
�W (k, R) = θ(R−1 − |k|)
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∂Π(δ, S)

∂S
=

1

2

∂2Π(δ, S)

∂δ2
(Fokker-Planck eq.)

Π(δc, S) = 0

6/19

Π(δ, S) =
1√
2πS

�
e−δ2/(2S) − e−(2δc−δ)2/(2S)

�

1. Top-hat filter in k-space: 

2. Spherical collapse  (δc)

3. Gaussian initial conditions

Assumptions:
�W (k, R) = θ(R−1 − |k|)

F(S) =
δc√
2πS3

e−δ2c/(2S) (Press-Schechter)

solution
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At large masses, the PS theory underestimates the halo masses 
by a factor ~ 10; 
at small halo masses it overestimates them by a factor ~ 2

ν = δc/S = δc/σ2

Tinker et al., 2008

νf(ν) = 2δcF(δc/ν)

PS

Sheth-Tormen, 1999
Jenkins et al., 2001



Excursion Set Theory

A. De Simone        

Non-Gaussianities in halo clustering properties

8/19

Unphysical, one may not identify well-defined mass.
N-body sim. use top-hat filter in real space.

Smoothing with the top-hat filter in real space and/or 
dealing with non-Gaussianities makes the various random 
steps correlated: the dynamics is non-Markovian and 
memory effects are introduced.

1. Top-hat filter in k-space ?
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=
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(23)

as the relation governing the evolution of the probability distribution Π with smoothing

δc → B(S)

[Sheth, Tormen 2001]

Formation of DM haloes proceeds through an ellipsoidal collapse 
along each of the principal ellipsoidal axes under the action of external 
tides (DM haloes carry angular momentum) 

2. Spherical collapse ?

One can describe it by changing the collapse barrier into 
a moving collapse barrier 

It tends to sph. coll. in large mass limit

B(S) = δc

�
1 + 0.4

�
S

δ2c

�0.6
�
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3. Gaussian initial conditions ?

Want to include effects of primordial NG on 
structure formation.

NG introduces non-markovian dynamics and 
memory effects
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If any of the assumptions is not met, FP eq is non-local.
Need to go to a more fundamental level.

3. Gaussian initial conditions ?

Excursion Set Theory has stuck for years because of this 
technical difficulty.

Want to include effects of primordial NG on 
structure formation.

NG introduces non-markovian dynamics and 
memory effects
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[Maggiore, Riotto 2009]

S

0

Take “ensemble” of trajectories of the smoothed density contrast ξ(S) and 
follow them for a time S.
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[Maggiore, Riotto 2009]

W (δ0; δ1, · · · , δn;Sn) ≡ �δD(ξ(S1)− δ1) · · · δD(ξ(Sn)− δn)�

S

0

Take “ensemble” of trajectories of the smoothed density contrast ξ(S) and 
follow them for a time S.

Discretize S:  Sk=k ε . ξ(Sk)=δk. A given trajectory is defined by the set
 {δ1, ... , δn}. The prob. density in the space of trajectories is
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Take “ensemble” of trajectories of the smoothed density contrast ξ(S) and 
follow them for a time S.

Discretize S:  Sk=k ε . ξ(Sk)=δk. A given trajectory is defined by the set
 {δ1, ... , δn}. The prob. density in the space of trajectories is

Π is constructed by summing over all paths that never exceed the threshold

[Maggiore, Riotto 2009]

W (δ0; δ1, · · · , δn;Sn) ≡ �δD(ξ(S1)− δ1) · · · δD(ξ(Sn)− δn)�

Π�(δ0; δn, Sn) =

� δc

−∞
dδ1 · · ·

� δc

−∞
dδn−1 W (δ0; δ1, · · · , δn−1, δn;Sn)

The problem is reduced to the evaluation of a path integral with boundaries.

S

0
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[Maggiore, Riotto 2009]

Π�(δ0; δn, Sn) =

� δc

−∞
dδ1 · · · dδn−1

� ∞

−∞

dλ1

2π
· · · dλn

2π

× ei
�n

i=1 λiδi+
�∞

p=2
(−i)p

p!

�n
i1=1···

�n
ip=1 λi1 ···λip �ξi1 ···ξip �c

≡ eZ

Generating functional of connected correlators!

Z = i
�

i

λiδi −
1

2

�

i.j

λiλj�ξ(Si)ξ(Sj)�c +
(−i)3

3!

�

i,j,k

λiλjλk�ξ(Si)ξ(Sj)ξ(Sk)�c + · · ·
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[Maggiore, Riotto 2009]

Π�(δ0; δn, Sn) =

� δc

−∞
dδ1 · · · dδn−1

� ∞

−∞

dλ1

2π
· · · dλn

2π

× ei
�n

i=1 λiδi+
�∞

p=2
(−i)p

p!

�n
i1=1···

�n
ip=1 λi1 ···λip �ξi1 ···ξip �c

≡ eZ

Generating functional of connected correlators!

NG: 

Non-spherical collapse:                      in the integrals

�ξ(Si)ξ(Sj)ξ(Sk)�c �= 0

δc → B(S)

Z = i
�

i

λiδi −
1

2

�

i.j

λiλj�ξ(Si)ξ(Sj)�c +
(−i)3

3!

�

i,j,k

λiλjλk�ξ(Si)ξ(Sj)ξ(Sk)�c + · · ·



Using path integrals, we computed the halo mass function with and without NG, 
for a generic barrier B(S).

Sheth&Tormen (2002) showed that the empirical formula fits well numerical sims:

For NG=0, recover (numerically) the ST ansatz 
(better than 10%) and put it on firmer grounds.
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Halo Mass Function
[DS, Maggiore, Riotto 2010]

1.0 5.02.0 3.01.5

0.01

0.02

0.05

0.10

0.20

0.50

Ν�∆c�Σ
Ν
f�Ν�

Our result

ST

fNL = 0

FST(S) =
e−B2(S)/(2S)

√
2πS3/2

5�

p=0

(−S)p

p!

∂pB(S)

∂Sp

F(S) =
B(S)√
2πS3/2

e−B2(S)/(2S) − B�(S)√
2πS

e−B(S)2/(2S)

+
B��(S)

4π

�√
2πSe−B(S)2/(2S) − πB(S)Erfc

�
B(S)

2S

��
+ · · ·



Using path integrals, we computed the halo mass function with and without NG, 
for a generic barrier B(S).

Sheth&Tormen (2002) showed that the empirical formula fits well numerical sims:

For NG=0, recover (numerically) the ST ansatz 
(better than 10%) and put it on firmer grounds.

For NG≠0, ~10% corrections
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Halo Mass Function
[DS, Maggiore, Riotto 2010]

FST(S) =
e−B2(S)/(2S)

√
2πS3/2

5�

p=0

(−S)p

p!

∂pB(S)

∂Sp

F(S) =
B(S)√
2πS3/2

e−B2(S)/(2S) − B�(S)√
2πS

e−B(S)2/(2S)

+
B��(S)

4π

�√
2πSe−B(S)2/(2S) − πB(S)Erfc

�
B(S)

2S

��
+ · · ·

1.0 5.02.0 3.01.5

1.

1.02

1.04

1.06

1.08

1.1

Ν�∆c�Σ
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G
�f G
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Halo Mass Function with NG

The halo mass function with NG is usually computed hoping that

No rigorous justification. 

We computed directly FNG 
for ellipsoidal collapse, with 
“saddle-point” improvement 

Proved that the above 
ansatz is incorrect.

FNG(fNL, S)

FG(S)
=

FNG(fNL, S)

FG(S)

����
PS

≡ R(S)

[D’ Amico, Musso, Norena, Paranjape 2010]

1�1013 5�10131�1014 5�10141�1015 5�1015
1.0

1.1

1.2

1.3

1.4

1.5

M �M
�
h�1�

F N
G
��F ST

R N
G
� Matarrese et al. �2000�, z�2Matarrese et al. �2000�, z�1Lo Verde et al. �2008�, z�2Lo Verde et al. �2008�, z�1

[DS, Maggiore, Riotto 2010]
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M�M0

�dN�
dl
n
�M�M

0�� NG
�dN�

dl
n
�M�M

0�� G

M0 = 1015h−1M⊙

∆z = 0.3
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Halo Mass Function with NG

Conditional probabilities are useful for formation history.

Given a halo of mass M0 at redshift za, how was its mass partitioned 
among smaller haloes of mass M at redshift zb >za.

In Excursion Set Theoy: two-barrier problem. 

Conditional mass function for generic barrier, with/without NG

[DS, Maggiore, Riotto 2010]

[Lacey, Cole 1993]
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�
δρ

ρ

�

galaxies

= b

�
δρ

ρ

�

mass

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

Ν

b

= δc/σ

Fit to N-body 
(Tinker et al. 2010)

Sheth-Mo-Tormen

Our result

spherical collapsefNL = 0Our result for generic barrier, 
without NG:

b(S) = 1 +
B(S)

S

− 1

B(S) +
�∞

p=1
(−S)p

p!
∂pB(S)
∂Sp

b(S) = 1 +
ν(S)2 − 1

δc
= 1 +

δc
S

− 1

δc [Mo, White 1996]

[Cole, Kaiser 1989]

The bias is the proportionality of halo 
overabundance wrt matter overdensity:



We computed the (linear and quadratic) bias for generic barrier 
and with NG. For ellipsoidal collapse:

Halo Bias with NG
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∆b(1)NG � −1

6
S3

�
3aν2 − 1.6(aν2)0.4

�

S3 = �δ3(S)�/S2



We computed the (linear and quadratic) bias for generic barrier 
and with NG. For ellipsoidal collapse:

Factor 2/3 discrepancy with                                            which 
uses the “form factor” prescription. 
Our calculation is from “first principles”. 

Non-Markov corrections due to filter:

N-body sims began to study the bias with NG.

Halo Bias with NG
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[Ma, Maggiore, Riotto, Zhang 2010]

[Desjacques, Marian, Smith 2009] 

[Wagner,  Verde 2011]

∆b(1)NG � −1

6
S3

�
3aν2 − 1.6(aν2)0.4

�

S3 = �δ3(S)�/S2



Formation time: the earliest time when at least half of its mass was assembled into a 
single progenitor.

Our computation: prob. of formation redhifts 
with NG. We also found an analytical 
generalization of Lacey&Cole for NG.

Caveat on S(M)

Halo Formation Time with NG
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[Lacey, Cole 1993]

[Giocoli, Moreno, Sheth, Tormen 2006]

< 10% shift

p(zb) = 2ω(zb)Erfc

�
ω(zb)√

2

�
dω(zb)

dzb ω(zb) =
δc(zb)− δc(za)�
S(M0/2)− S(M0)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

zb

dP
�dz b

Spherical collapse with barrier a ∆c

S(M)~M-1

S(M) numerical

fNL=0
fNL=50

M0 = 1015h−1M⊙

z

P
(>

z)

4 C. Giocoli, J. Moreno, R. K. Sheth & G. Tormen

Figure 2. Cumulative distribution of dark halo formation times for halos identified at z = 0. From top to bottom, panels show results
for halos with masses in the range log10M/h−1M" : 11.5-12, 12-12.5, 12.5-13, 13-13.5, and 13.5-14. Symbols show the measurements in
GIF2; dotted curve shows the prediction associated the constant barrier spherical collapse model; dot-dashed curve shows the analytical
fit equation (6) with q = 0.707. Short-dashed and solid curves show the predictions associated with the square-root and ellipsoidal
collapse based models.

180 particles) as follows. The progenitors of a halo of mass
M0 at z0 are found by identifying in the previous output
z1 > z0 all haloes which contribute any number of particles
to M0. Of these, the progenitor which contributes the most
mass to M0 is called M1. This procedure is then repeated,
starting with M1 at z1, considering its progenitors in the pre-
vious output time z2 > z1, and choosing from them the one,
M2, which contributes the most mass to M1. In this way, the

mass of the most massive progenitor is traced backwards in
time, to high redshift.

We will present our results as a function of halo mass.
We have estimated formation times for 5611 halos with
log10(M/h−1M") in the range 11.5 − 12, 2431 in the range
12 − 12.5, 892 in the range 12.5 − 13, 341 in the range
13 − 13.5, 92 in the range 13.5 − 14, and 29 in the range
14 − 14.5. These abundances are well fit by the formula of

c© 2006 RAS, MNRAS 000, 1–8
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mass to M0 is called M1. This procedure is then repeated,
starting with M1 at z1, considering its progenitors in the pre-
vious output time z2 > z1, and choosing from them the one,
M2, which contributes the most mass to M1. In this way, the

mass of the most massive progenitor is traced backwards in
time, to high redshift.

We will present our results as a function of halo mass.
We have estimated formation times for 5611 halos with
log10(M/h−1M") in the range 11.5 − 12, 2431 in the range
12 − 12.5, 892 in the range 12.5 − 13, 341 in the range
13 − 13.5, 92 in the range 13.5 − 14, and 29 in the range
14 − 14.5. These abundances are well fit by the formula of
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Excursion Set Theory (with path integrals) is a convenient 
and powerful framework to compute properties of LSS 
analytically.

It allowed a consistent derivation of the effects of NG.

“First-principlesʼʼ calculation of halo mass function, bias and 
formation time for generic barrier, with and without NG.

Look forward to comparing with N-body sims and new data.
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and powerful framework to compute properties of LSS 
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It allowed a consistent derivation of the effects of NG.
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formation time for generic barrier, with and without NG.

Look forward to comparing with N-body sims and new data.


