Modeling the Shapes of Dark Matter Halos

G. Rossi

KIA5

Graziano Rossi

Korea Institute for Advanced Study (KIAS)

"Progress on Old and New Themes in Cosmology (PONT) 2011" Palais des Papes, Avignon, FRANCE

April 20, 2011

OUTLINE

- Motivation and Goals
- The Model
- Omparison with Simulations
- Basic Highlights

MAIN REFERENCE

▲ロト ▲局ト ▲ヨト ▲ヨト ヨヨ のの⊙

• G. Rossi, R. Sheth & G. Tormen (2011), MNRAS (arXiv:1010.2839)

MOTIVATION AND GOALS

MOTIVATION

- Halos are not spherical!
- Ellipsoidal description improves density profiles
- Implications for weak and strong lensing

▲ロト ▲局ト ▲ヨト ▲ヨト ヨヨ のの⊙

Motivations

The Model

Comparison with Simulations

Future Prospects

GOALS

- Statistical study of DM halo morphology
- Link between ellipsoidal shape and primeval principles (gravitational instability)
- Provide scheme for DM halo evolution $(a_i, b_i, c_i \rightarrow a_f, b_f, c_f)$

SHAPE PARAMETERS

Ellipticity

$$e = \frac{\lambda_1 - \lambda_3}{2\delta}$$

Prolateness

$$p = \frac{\lambda_1 + \lambda_3 - 2\lambda_2}{2\delta}$$

"Prolate" object $\rightarrow 0 \ge p \ge -e$ "Oblate" object $\rightarrow 0 \le p \le e$ Sphere $\rightarrow e = 0, p = 0$ a ≃ b ≫ c: Oblate object (disk-shaped) → pancake

 b ≃ c ≪ a: Prolate object (cigar-shaped) → filament

Motivations

The Model

Comparison with Simulations

ESSENCE OF THE MODEL

Model made of two independent parts

- Mapping $(e, p) \rightarrow (b/a, c/a)$ for and initial patch of given R and $\delta \rightarrow evolution$
- 2 Correct assignment $(e, p) \rightarrow$ halo mass \rightarrow initial conditions
- First Part → Bond & Myers (1996), improved method
- Second Part \rightarrow Sheth & Tormen (2002), improved method

▲ロト ▲局ト ▲ヨト ▲ヨト ヨヨ のの⊙

Motivations

The Model

Comparison with Simulations

ELLIPSOIDAL EVOLUTION (1)

EQUATIONS OF MOTION: ELLIPSOID

$$\begin{aligned} \frac{d^2 A_k}{dt^2} &= -4\pi G \bar{\rho} A_k \Big[\frac{1+\delta}{3} + \frac{b'_k}{2} \delta + \lambda'_{ext,k} \Big] \\ &= -\frac{G}{A_k^2} \frac{4\pi A_k^3 \bar{\rho} (1+\delta)}{3} - 4\pi G \bar{\rho} A_k \Big[\frac{b'_k}{2} \delta + \lambda'_{ext,k} \Big] \\ &= -\frac{GM}{A_k^2} - 4\pi G \bar{\rho} A_k \Big[\frac{b'_k}{2} \delta + \lambda'_{ext,k} \Big] \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivations

The Model

Comparison with Simulations

ELLIPSOIDAL EVOLUTION (2)

The complication arises from extra terms due to the ellipsoidal potential in a known external tidal field:

$$\Phi = -\pi G \sum_{k=1}^{3} \left[b_k \rho + \left(\frac{2}{3} - b_k \right) \bar{\rho} \right] A_k^2$$

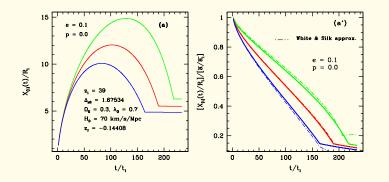
Motivations

The Model

Comparison with Simulations

Future Prospects

DETAILS


•
$$b'_k = b_k - 2/3$$

• $b_k = A_1(t)A_2(t)A_3(t)\int_0^\infty \frac{d\tau}{[A_i^2(t)+\tau]\prod_{i=1}^3 [A_i^2(t)+\tau]^{1/2}}$

•
$$\lambda'_{\text{ext},k} = \frac{D(t)}{D_i(t)} [\lambda_{\text{ext},k}(t_i) - \delta_i/3]$$

- D is the linear theory growth mode of perturbations
- λ_{ext,k}(t_i) are the initial eigenvalues of the strain tensor
- Extra term needed for Λ-cosmologies

ELLIPSOIDAL EVOLUTION (3)

Motivations

The Model

Comparison with Simulations

Future Prospects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□■ のへで

WHITE & SILK APPROXIMATION: EXTENSION

Nelect the time dependence of the $b'_k s$ in the equation of motion and replace the quantity with a "spherical average"

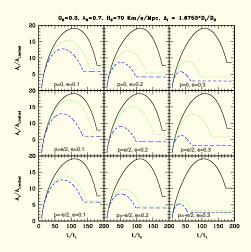
AN ANALYTIC APPROXIMATION

$$A_k(t) \simeq \frac{a(t)}{a(t_i)} \Big\{ A_k(t_i) \Big[1 - \frac{D(t)}{D(t_i)} \lambda_k(t_i) \Big] - A_h(t_i) \Big[1 - \frac{D}{D_i} \frac{\delta_i}{3} - \frac{a_{\theta}(t)}{a(t)} \Big] \Big\}$$

where

•
$$A_h(t_i) = 3 / \sum_k A_k(t_i)^{-1}$$

a_e(t) = expansion factor of a universe with initial density contrast δ_i = Σ_k λ_k(t_i)


・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

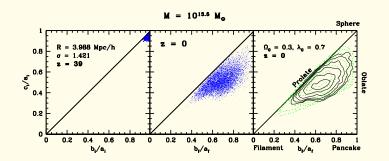
Motivations

The Model

Comparison with Simulations

SHAPE PARAMETERS: MEANING

Prolate objects \rightarrow 2 short, 1 long \rightarrow *p* negative (filaments) Oblate objects \rightarrow 1 short, 2 long \rightarrow *p* positive (pancakes)

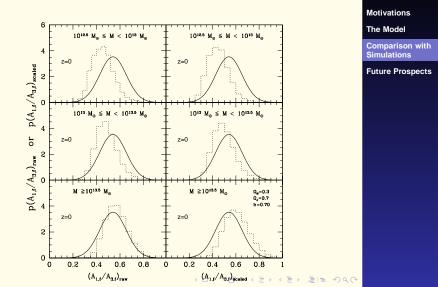

At p fixed, if $e \uparrow$ then objects are more elongated (filament-like)

Motivations

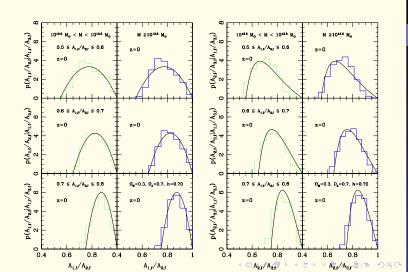
The Model

Comparison with Simulations

MODEL IN A NUTSHELL



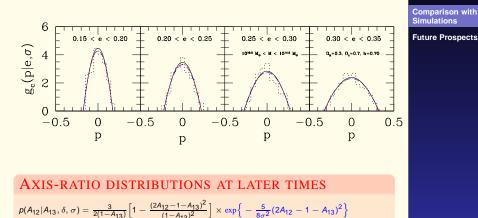
Motivations


The Model

Comparison with Simulations

COMPARISON WITH SIMULATIONS

COMPARISON WITH SIMULATIONS



Motivations

The Model

Comparison with Simulations

UNIVERSAL SHAPE FUNCTION

・ロト・4回ト・4回ト・4回ト・4回ト

Motivations The Model

HALO SHAPES: RATIONALE

MOTIVATION

Theoretical model for dark halo shapes

ACHIEVEMENTS/RESULTS

- Satisfactory match with simulations only around M_{*}
- Good agreement for conditional distributions
- Analytic insights (i.e. WS approximation, explanations of fitting formulae, etc. ...)

Relevance & Ongoing Work

- Investigate discrepancies model vs simulations \rightarrow HORIZON RUN simulation @ KIAS
- Numerous theoretical studies up-to-date (i.e. Robertson et al. 2009; Maggiore & Riotto 2010 ...)
- Relevance for EUCLID and WL → accurate shapes of galaxies

Motivations

The Model

Comparison with Simulations

Kamsahamnida!

G. Rossi