STRATEGY COMPARISON FOR SEMANTIC ZERO-SHOT TAXONOMY FILTERS

OSSYM 2022 – 4th INTERNATIONAL OPEN SEARCH SYMPOSIUM

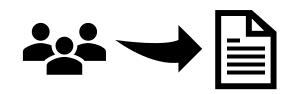
Andreas Hamm DLR Institute for Software Technology

A. Hamm: Zero-shot taxonomy filters, 10.10.2022

Searching vs Filtering

Searching

- Information need formulated freely by users
- Users know what they are looking for
- Users find documents

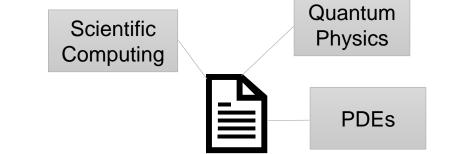


Filtering

- Categories / meta data / tags made available by information service provider
- Users scan categories
- Documents find users

Multi-Label Text Classification

- Tag a text with content-related labels from a predefined controlled vocabulary (label set)
 - Traditionally manual tasks requiring expert subject knowledge
 - Automation needed for large-scale document numbers and vocabulary sizes
 - Rule based approach via Boolean combination of search terms
 - ML approach with classifiers trained on labeled examples
 - State-of-the-art: Label-wise attention networks
 - These approaches require a lot of effort when introducing a new label set



- Aiming at a method that
 - Works with user-provided label set
 - Does not require label-set-dependent training
 - Works fast for large-scale situations

Zero-Shot Text Classification with Transformer Models

- Classifiers without explicit training on labeled examples
 - Use pretrained transformer-based models
- Zero-Shot Text Classification as sentence entailment problem (Yin, Hay, Roth 2019)
 - Use template "This is a text about ..." together with the class label as hypothesis
 - Use a transformer-based model to evaluate whether the text entails the hypothesis
 - Scales like N*M for N texts and M as size of the label set
- Zero-Shot Text Classification via sentence similarity
 - Use template "This is a text about ..." together with the class label as hypothesis
 - Use sentence-transformers (Reimers, Gurevych 2019) to transform sentences into vectors and calculate cosine similarity between text and hypothesis
 - Scales like N+M for N texts and M as size of the label set

Taxonomies

- Hierarchically structured label sets
- Wide-spread in many subject areas
- Examples used here (both with broad scope)
 - For scientific publications: OpenAlex concept hierarchy
 - Reduced version of the MAG concept hierarchy
 - 65k concepts on 6 levels
 - Example: Mathematics > Geometry > Differential Geometry > Hyperbolic Geometry > Hyperbolic Triangle > Ultraparallel Theorem
 - Many labels carry multilingual descriptions
 - Tested with samples from OpenAlex (English)
 - Base line: Attention-based classifier
 - For news articles: Media Topics of the International Press Telecommunications Council
 - All labels carry multilingual descriptions
 - 1350 categories on 5 levels
 - Example: Politics > Government > Defense > Armed Forces > Military Service
 - Tested with samples from Reuters (English) and APA (German language)
 - Base line: Rule-based classifier

Strategies for Improving Classification Results (1)

- Use label descriptions when generating hypotheses
 - Differential geometry (branch of mathematics dealing with functions and geometric structures on differentiable manifolds)
 - Defense (anything involving the protection of one's own country)
- Break down text into individual sentences
 - Do not aggregate sentence embedding vectors
 - Calculate similarity scores of labels for each sentence individually
 - Aggregate label scores, but with saturation (cf. BM25 ranking)
 - Consider all labels surpassing a score threshold
- Put higher weight on first sentence (typically the title)

Strategies for Improving Classification Results (2)

Make use of hierarchical taxonomy structure

- Proceed top-down
 - ⊗ Relies on taxonomy quality
 - ⊗ Relies on complete coverage by children
- Take account of distance of labels in the hierarchy graph
 - ⊗ Blurs semantic details on finer levels
- Aggregate similarity scores bottom-up
 - © Prefer labels along paths originating from highest scored labels on top levels
 - © Eliminates misclassifications caused by homonyms
- Try several pretrained sentence transformer models

Assessing Multi-Label Classification Quality

- Benchmarking multi-label text classification is notoriously problematic
 - Impossible to decide about the correct labeling
 - Impossible to provide complete coverage of all labels
- Here: Mean precision (ØP), mean recall (ØR), mean F1 (ØF1)
 - Compute per document the precision, recall, and F1 of predicted vs. "true" labels
 - Average these over a sample of documents

OpenAlex	Conventional		Label		Description			Sentences			Hierarchy				
Model	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1
all-MiniLM-L6-v2	60.6	37.1	44.9	40.0	22.4	27.6	51.7	31.1	37.4	32.0	48.4	37.1	47.4	52.4	47.1
paraphrase-multilingual-MiniLM- L12-v2	60.6	37.1	44.9	27.5	14.6	18.6	30.3	14.2	18.8	28.9	15.9	18.6	25.7	37.8	30.6
			i .												

Reuters	Conventional			Label			Description			Sentences			Hierarchy		
Model	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1
all-MiniLM-L6-v2	51.3	44.4	43.9	41.8	18.9	24.7	59.5	25.0	33.2	47.2	30.4	34.3	47.5	45.9	45.5
paraphrase-multilingual-MiniLM- L12-v2	51.3	44.4	43.9	26.6	27.5	24.9	26.5	24.1	23.5	26.1	30.8	24.8	30.3	45.1	34.0

APA	Conventional			Label			Description			Sentences			Hierarchy		
Model	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1	ØP	ØR	ØF1
paraphrase-multilingual-MiniLM- L12-v2	83.0	51.7	61.3	14.5	11.7	10.5	31.0	32.8	29.9	26.1	35.2	27.3	33.0	61.0	40.4

A. Hamm: Zero-shot taxonomy filters, 10.10.2022

Observations and Summary

Time

- Entailment-based zero-shot classification is too slow for large-scale label sets
- Similarity-based zero-shot classification runs much faster
- Not possible to speed up further by Approximate Nearest Neighbor search because of risk of missing labels

Quality

- Using descriptions, sentence aggregation with saturation, and hierarchical consistency can enhance pretrained zero-shot classification close to the performance of more elaborate classifiers
 - Clearly better recall, slightly less precision
 - This is true only when using the best-suited pretrained English language models
 - Pretrained multilingual models are less suitable (still slightly better recall but much lower precision)