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Why Care: “Raw” BM25

Figure: ’teens’, ElasticSearch (BM25) on CommonCrawl 04/2017
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Why Care: Learning-to-rank

Figure: ’teens’, Microsoft Bing, SafeSearch: Off
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Why should a web search engine care about adult
content?

I Cultural reasons → reputational risk

I Legal reasons → financial risk

I Moral reasons → controversial, compare e.g.
Stanley et al. 2018 [1]:
“Boys’ perpetration of sexual coercion and abuse was
significantly associated with regular viewing of online
pornography.”

I Enable the user to choose by personal preference
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Other approaches to classify adult content

Manually compiled dictionaries and feature engineering

I WebGuard, Hammami et al., 2006 [2] use 14 features
and a decission tree classifier. Feature examples:
I number of sexually explicit words
I number of images whose name include explicit words

I Largillier et al. 2015 [3] use 12 features and a
decision forest for classification, some new features:
I terms that are usual categories of pornographic websites
I names of 8825 adult entertainment industry actors

Bag-of-words document representation

I Du et al., 2003 [4] use a k-nearest neighbor approach
based on vectors of word frequencies. A document is
tagged as adult if cosine similarity to average of top
50% of adult training vectors is above a predetermined
threshold → additional hyperparameters
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Prerequisites

Objectives

I Classification: Assign class labels adult versus non-adult
to a home page of a domain

I Classification based on textual content of web page only

I Prefer simple and model based over more complex
approaches

Evaluated Classification Algorithms

Evaluate two established and simple text classification
approaches

I Multinomial naive Bayes (MNB)

I Logistic regression (LogReg)
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Informal Characterization

Multinomial Naive Bayes

I Document is represented as a set of words together
with word frequencies → bag-of-words representation

I Learns joint probability function by estimating relative
frequencies

I Assigned class = arg maxc P(c)
∏

w∈d P(w |c)

I Generative, linear classifier

Logistic Regression

I Document is represented as a vector of word frequencies
→ bag-of-words representation

I Learns weights by minimizing cross-entropy loss function

I Chooses class adult if βββTddd + θ > 0

I Discriminative, linear classifier
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Training Data

Adult training samples

I Perform web search on major search engines using
relevant keywords (like ’porno’) → list of URLs

I Remove path from URLs and delete duplicate URLs

I Fetch home pages and remove html tags

I Keep only German and English language and
size > 500 bytes → 217 adult documents

Non-Adult training samples

I Choose 5000 biggest (number of pages) domains from a
crawl of German web

I Same processing as above → 4351 non-adult documents
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Training Procedures

Multinomial Naive Bayes

Create a vocabulary for the training corpus, where each
entry contains word wi as key, class label and probabilities

P(wi |c) =
count(wi , c) + 1∑

w∈V (count(w , c) + 1)

Logistic Regression

I Feature vectors are the document vectors of word
frequencies in the training corpus

I Use only the 2000 features with highest χ2 statistics

I Stochastic gradient decent (SGD) to determine weights
βββ and θ
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Some Notes on Performance

Computational performance of classification

I Parsing of web page (remove html tags)

I Tokenization

I MNB: Vocabulary lookups to retrieve probabilities

I LogReg: Number of features

Some numbers
I MNB: Average computation time 2.5 ms on single

2.4GHz i3-7100U core (C-implementation)

I LogReg: No comparable values because of python
scikit-learn environment → expected to be faster than
MNB (no vocabulary lookups)
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Confusion Matrix

true values
adult ¬adult precision

out
adult 210 29 210

210+29
=87.9%

¬adult 7 4322 4322
4322+7

=99.8%

recall 210
210+7

=96.8% 4322
4322+29

=99.3%

Table: MNB: Confusion matrix for 10-fold cross-validation
including micro-average precision and recall.

true values
adult ¬adult precision

out
adult 195 6 195

195+6
=97.0%

¬adult 22 4345 4345
4345+22

=99.5%

recall 195
195+22

=89.9% 4345
4345+6

=99.9%

Table: LogReg: Confusion matrix for 10-fold cross-validation
including micro-average precision and recall.
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Misclassification Rates

Misclassification rate = 1− recall

method adult ¬adult

MNB 3.2% 0.7%

LogReg 10.1% 0.1%

Largillier et al. [3] 2.2% 4.7%

Du et al. [4], threshold 0.14 1.2% 0.9%

Table: Comparison of misclassification rates. Note that reported
results from [3] and [4] are based on different training data and
hence comparability is limited.
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Discussion of Results

Observations
I Both evaluated simple, text based classifiers perform

well, but MNB shows lower adult misclassification rate

I Most documents misclassified by MNB are “border”
cases e.g. www.erotikforum.at → labeling training
data is subjective

Possible Improvements

I Instead of using only the home page to classify a
domain, defer classification until more pages are
classified and perform some kind of majority vote

I Extend pure MNB approach by adding additional
features like image count, text quality (e.g. perplexity)

I More powerful models like SVMs
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Summary

I Commercial / public search engines have to address the
issue of adult content

I Application of learning-to-rank can be a first line of
defence against ambiguous search terms

I Simple text classifiers achieve low misclassification rates

I Multinomial naive Bayes classifiers shows best
performance compared to logistic regression in respect
to adult miss rate

Thank you for listening!

olaf.behrendt (at) neurolab.de
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