

OpenWebSearch.EU Towards an Open Web Search Infrastructure

https://openwebsearch.eu/

Prof. Dr. Michael Granitzer

CSC

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

Research NGOs Businesses

09.10.22 Universität Passau

Motivation

Web Search: Critical Infrastructure + Oligolopy

Two properties of Web Search that don't fit

- A critical infrastructure for society, comparable to satellite navigation
- A market oligopoly: i.e. "a market structure in which a market or industry is dominated by a small number of large sellers or producers." (Wikipedia)

Effects

- Reduced User Choice
- User locked-in despite of "Open" technologies
- Rich-gets-richer effects through exclusive data
- Concerning market behaviour (e.g. Jedi Blue)
- SEO optimized ranking vs. best information delivery?
- Limited business models

•

Beyond whining about oligopolies: The Web as Resource

Web data drives innovation beyond search

OpenAl trained on open crawls like Common Crawls

Tapping the web as resource

Working with web data can be challenging and costly: its big & unstructured

- High-demands on hardware resources
- High level of technological skill
 - Infrastructure
 - Big Data computing
 - Data cleaning
 - Natural Language Processing & Computer Vision
- Need only for particular subsets of the data
- Legal and ethical constraints (e.g. GDPR)
- Competitive, partially adversarial environment (e.g. Spam, Link Farms, Security)

Völske, M., Bevendorff, J., Kiesel, J., Stein, B., Fröbe, M., Hagen, M., & Potthast, M. (2021). Web Archive Analytics. INFORMATIK 2020.

Core Elements of Web Search

The Web Index

- Data structure for fast access to web documents / sites
- Supports search and ranking criterions

2. Preprocessing Pipeline: Hypermedia → Search API

- Crawling the Web and its formats
- Cleaning Web Data
 - Preprocessing HTML at scale
 - Metadata Extraction and Management (e.g. Microformats)
 - Headless Browser support (e.g. SPAs)
 - Dealing with additional formats (e.g. PDF, Doc, PNG...)
- Semantic Enrichment / Extraction
 - Geo-tagging
 - Information Extraction & Linking
 - Knowledge Graphs
- Indexing

3. Search Uls

A single box + ranked list

Not only technical challenges, but also legal challenges; overcoming challenges; overcoming challenges via crowdsourcing and societal challenges via crowdsourcing technical challenges

Our Goal: Build an Open Web Index Collaboratively

- Build an Open Web Index including the corresponding pipelines and infrastructure
- Empower users, researchers & innovators to build on top of the Index
- Principles for an <u>Open</u> Web Index
 - Open Data: <u>Slice'n dice the index as needed</u>
 - Open Source / Open Configuration: Know the tech stack <u>and its</u> <u>usage</u>, extend if needed
 - Open Resources: fair-use access and you can bring your own resources
 - Open to contributions from third parties (e.g. semantic Enrichment)
 - Collaborative Management of a Web Index
 - Transparency / control to the content owners respect legal, societal and ethical frameworks

pen WebSearch

Objectives

Objectives

Objective 4: Ecosystem

- Community Building
- Dissemination and Exploitation
- Simulating a competitive search engine market and web-data products
- Third Party Calls

Objective 2: Added Value

Vertical Search Engines

(Open Science Search, Mobile location Search, 3rd Party)

High-Quality Web Data Collections (cleaned, preprocessed, annotated) Q Search

Novel Search Paradigms (Personal Search, Argumentation search, Conversational Search)

Knowledge Representation Models (Knowledge Graphs, Neural Language Models)

Objective 1: Technology Stack

- Coordinated Crawling
- Extensible Content Analysis
- Federated Indexing and Search
- Scalable, federated infrastructure

Objective 3: Infrastructure and R&D Network

- Infrastructure Pilot
- Feasbility Study and Cost Estimation
- Governance Structure
- Platform for providers and consumers of data products and services

Conceptual Model - Collect Web Information at Scale

Content Information

- Genres
- Topics / Concepts
- Geo-References
- Information Quality
- Ethics (e.g. Hatespeech).

Legal Information

- License (CC-*)
- Personal Information
- Legal Content

Content Reuse Properties

- Indexing Y/N
- Data Mining Use Y/N...

Website Usage

- Applied Semantic Enrichment Alg.
- Engines that indexed a site
- Access statistics
- User Ratings
- Blacklists / Whitelists
- Inclusion stats in Search Engines

Access Information

- Reliability, Return Codes
- Access Time, Change Time
- API availabliity ..

Topological Information

- Site structure (sub-sites)
- In- /outlinks to Websites

Information Sources: Crawler, Website Owner, Content Creator, Automatic Analysis, Logs, Users/SE Providers

At Scale: Cover >60% of the Text Web

Universität Passau 11

The Approach

Resources / Ecosystem / Target Stakeholders

Third Party Services and Data Products

Open Science Search & Mobile Search

OpenWebSearch.EU Service Infrastructure

OpenWebSearch.EU Storage Infrastructure / Types of data products

Provenance chain for legal, ethical and societal considerations

argumentation search, conversational

Estimated resources based on http://chatnoir.eu/

30-50% of commercial indices (html only)

Entities / Components	Technical Specification
Estimate for storage raw data (replicated 3 times)	1500 TiB
Estimated size of the Open Web Index (replicated 3 times)	500 TiB (Fast Access)
Estimated demands for temporary storage for intermediate results	1000 TiB
Node requirements for storage and analytics computations	25 Nodes a 96 cores & 256 GiB RAM
Node requirements for serving the index	70 Nodes a 48 cores & 256 GiB RAM

Critical: Extensibility and openness

Example: Argument Search

09.10.22

Outcomes (Planned)

Some Envisioned Key Innovations

- Open Management of Web<u>site</u> Data
- Open pre-processing and new semantic enrichment for information quality and ethical considerations

Bootstrapping the ecosystem: 1.3 M calls and new

- Two search verticals (Open Science and Location-based search) and new search paradigms
- Open Search Engine Hubs Install a search engine like a virtual machine including personal search engines or augmented enterprise search (e.g. only take the part of the web the interests you or your organisation)
- Ethical, legal and social concerns

 Towards a European open search association: Joining infrastructure organisations, researchers and innovations to bootstrap an infrastructure

Key Question: Feasibility of ure

Impact of an Open Web Index

Opening up the search market

- Search engines with very different flavours and purposes
- Choose the search engine you prefer, similar to the choice of your newspaper

Support the development of [new] search paradigms at large scale

- Argumentation search, conversational search, geo-centered search, privacy
- HCI and UI concept at scale

Ease the utilization of clean Web Data

- Neural Language Models, Data Augmentation ...
- Study trends at Web level: changes in end use licenses after GDPR, behavioural data

Web Search as a multiplier Service

Integration with other Data Spaces (e.g. EOSC, GAIA-X, Enterprise Search, Clouds)

Empower users, researchers and innovators at scale

Conclusion

Thank You.

Questions?

- No substitution of major players: (i) we can't and (ii) we do it differently
- Opening up the search market and tapping the web as resource
- Three Pillars: Tech, Network, Ecosystem
- Collaborative, open approach for building an Open Web Index
- Let's do it together: third party funds for bootstrapping
- Caveat: OpenWebSearch.EU can only bootstrap the approach. More efforts needed to go beyond
- Involve the Community Funding available for outside parties
 - Public call to contributors: 1.3 Million EUR on the scope of OpenWebSearch.EU
 - Further NGI funds on sister project NGI Search: (https://www.ngisearch.eu/)